История освоения космоса. Кратко этапы освоения космоса. История российской космонавтики Современное развитие космоса

История освоения космоса. Кратко этапы освоения космоса. История российской космонавтики Современное развитие космоса

Ошеров Александр Аркадьевич

ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

по теме:«Развитие российской космонавтики»

Скачать:

Предварительный просмотр:

МБОУ Шамординская общеобразовательная школа Жуковского района

Брянской области

на областной конкурс

творческих работ

по космонавтике

« Звездные дали» .

ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

по теме:

«Развитие российской космонавтики»

Ошеров Александр Аркадьевич,

учащийся 9 класса

д.Шамордино, ул.Сельская, д.3, кв.2.

Руководитель :

Даниличева Надежда Ивановна,

учитель физики

Адрес и телефон образовательного учреждения:

242814, Жуковский район

д.Шамордино,

Ул.Молодежная, д.32,

(9-92-3-34)

Шамордино 2012

1. Введение. 2

2. Этап теоретической космонавтики. К.Э Циолковский - основоположник космонавтики. 4

3. Этап практической космонавтики. Королев С.П.- конструктор в области ракетостроения и космонавтики. 9

4. Первый спутник Земли и полеты животных. 11

5. Юрий Гагарин – первый человек в космосе. 12

6. Терешкова ВВ – первая женщина космонавт. 18

7. Леонов А.А. - выход в открытое пространство. 20

9. Международные полеты в космос. 23

10. Космос будущего. 24

11. Заключение. 25

12. Литература. 26

Введение .

Человечеству от природы присуще стремление познать новое, ранее неизвестное. Вспомним, например, с каким упорством еще древние ученые пытались проникнуть в сущность вещей. Как путешественники различных времен, стран и народов не могли спокойно жить в городах и селениях: неведомая и могучая жажда познания заставляла их покидать уютные дома и пускаться в рискованные, полные волнений и лишений путешествия. Примеров этому можно было бы привести великое множество. вопрос: что там за горизонтом? – никогда не давал человечеству покоя.Точно также не дает покоя современным физикам -микрокосмос, биологам - проблемы возникновения и развития жизни, работникам техники и искусства – свои присущие этим отраслям знания проблемы. Чтобы получить ответ на этот вопрос, плыли корабли Колумба, уходили в горы экспедиции Семенова - Тянь_ Шанского, проводили опыты с ядовитыми смесями в своих лабораториях алхимики, а знаменитый физик Энрико Ферми сближал отверткой два бруска металлического урана в надежде вызвать цепную реакцию деления, хотя мог при этом и погибнуть от вспышки неведомых всепроникающих излучений.

Этот же вопрос: а что же там за горизонтом? - волнует и нас, живущих в современном мире. Пытаясь решить его, человек не ищет материальной выгоды, им движет неведомая сила любознательности, стремление к неизвестному.

Если экспедиция Колумба открыла огромный новый континент, названный Америкой, то космические исследования открыли для человечества в миллионы и миллиарды раз больший « континент» - космос со всеми его планетами, звездами и другими образованиями. И это открытие было столь великим, что, по – видимому, изменит в будущем судьбы человечества.

Космос! Это слово еще недавно было понятно только узкому кругу специалистов. А теперь оно вошло в нашу разговорную речь. Мы часто слышим: мы живем в век космоса. А все ли знают, что такое космос? Бесконечная пустыня с огненными шарами гигантских звезд и движущимися вокруг них большими и малыми планетами. Таким было прежнее представление о космосе. В действительности космическое пространство наполнено и пронизано различными излучениями, потоками частиц, метеорным веществом, гравитационным и магнитным полями.

Звезды образ образуют гигантские системы, называемые галактиками, так что наша галактика не единственная звездная система. Наблюдения и расчеты для видимой части Вселенной (Метагалактики) показывают, что число галактик более 1010. Огромные расстояния разделяют галактики. История развития и космонавтики и ракетной техники знает не мало славных имен, но основоположником научной космонавтики считается великий русский ученый Циолковский Константин Эдуардович.

Учеными космической эры по праву можно назвать Николая Егоровича Жуковского, Ивана Всеволодовича Мещерского, Фридриха Артуровича Цандера, Мстислава Всеволодовича Келдыша и многих других.

Всех этих ученых можно назвать родными братьями хотя бы потому, что все они были верными сыновьями России и потому, что все были одержимы и проникнуты идеей освоения космического пространства.

Цель : изучить особенности становления и развития российской космонавтики.

Задачи:

Изучить этапы развития космонавтики;

Познакомиться с конструкторскими изобретениями ставшими решающими факторами в деле « победы» человека над космосом, принесшие славу и обеспечили приоритет в освоении космоса;

Узнать о жизни первого космонавта, о конструкторе Королеве С. П. и об основоположнике космонавтики К.Э. Циолковском.

“Человечество не останется вечно на Земле,
но в погоне за светом и пространством сначала
робко проникнет за пределы атмосферы,
а затем завоюет себе все
околосолнечное пространство”.

К.Э. Циолковский

1. Этап теоретической космонавтики.

К.Э.Циолковский – основоположник космонавтики.

ЦИОЛКОВСКИЙ Константин Эдуардович (1857-1935) - русский советский учёный и изобретатель в области аэродинамики, ракетостроении, теории самолёта и дирижабля; основоположник современной космонавтики. (см. фото 1)

Константин Эдуардович родился 5 сентября старого стиля 1857 г. в селе Ижевском Рязанской губернии. От своих родителей Константин Эдуардович унаследовал живой ум, склонный к размышлениям и фантазиям, пытливость, настойчивость и любовь ко всевозможным ручным ремеслам, которые были широко развиты в их роду.

До десятилетнего возраста Константин Циолковский выделялся среди окружавших его сверстников живым характером и неистощимой энергией и фантазией.

Когда ему было около 10 лет, произошло событие, наложившее отпечаток на всю его дальнейшую жизнь. Он заболел тяжелой формой скарлатины, с трудом перенес ее и в результате осложнения после болезни оглох. Учиться дальше в обычной школе стало для Константина невозможно, и он уходит из школы. Начался трудный период жизни, который он сам называет «периодом бессознательности». Примерно в это же время умирает его мать и ребенок остается совсем одиноким и отрешенным от жизни. К концу этого периода, в возрасте 14-15 лет, отрезанный от своих сверстников, замкнутый мальчик начинает заниматься различными техническими игрушками, сам делает токарный станок и работает на нем. Он пробует самостоятельно читать книги: арифметику, где все ему кажется как будто понятным, общеизвестный в то время учебник физики Гано и какую-то геометрию. Так начинается для Циолковского прохождение курса средней школы. Читая геометрию, он мастерит самодельную астролябию и производит с ней ряд измерений. Не выходя из дома, он определяет расстояние до пожарной каланчи, находит его равным 400 аршинам; после проверки оказывается верно. «Так я поверил теоретическому знанию»,-говорит Циолковский. Читая физику, он самостоятельно делает автомобиль, двигающийся силой реакции струи пара, отбрасываемой назад, аэростат, наполненный водородом, и ряд других занимательных игрушек.
Отец видел выдающиеся технические способности сына и поощрял его увлечения и занятия. Было решено в 1873 г. послать мальчика в Москву учиться. Однако в Москве юный Циолковский никуда не поступил и продолжал заниматься самообразованием, ведя нищенское, полуголодное существование.

Метод занятий и работы у Циолковского остался прежний: все проверять и пробовать для того, чтобы уверовать в науку. В период московской жизни вырисовывается общее направление всех будущих технических работ и стремлений Циолковского. Почти все они относятся к области техники и механики движения. Это мысли о том, нельзя ли воспользоваться теми или иными свойствами вещества для осуществления того или иного типа движущегося аппарата. Циолковского занимают мысли о тяжести и о средствах борьбы с тяжестью. Он обдумывает, нельзя ли устроить, например, такой поезд вокруг экватора, в котором парализовалось бы действие тяжести вследствие наличия большого центробежного ускорения.

У него зарождаются мысли о том, каких размеров должен быть воздушный шар с металлической оболочкой, чтобы подниматься на воздух с людьми.

Так в сознании Циолковского уже тогда возникают смутные очертания его будущих работ в области металлических дирижаблей и идеи возможности вылета человека за пределы земного тяготения, или, как он говорил впоследствии, «обворожительные мечты». Первые замыслы оказались несостоятельными, первые попытки изобретать окончились неудачей, но это не охладило энергии изобретателя, который всегда впоследствии тепло вспоминал свои московские мечтания.

К концу московской жизни 19-летнего Циолковского можно считать определившимся изобретателем.

Быстро пролетел трехлетний период пребывания в Москве; надо было жить и пробивать собственную дорогу в жизни. Отец письмом вызывает его в Вятку, где тогда жила семья, и подыскивает ему кое-какие уроки. Свободного времени оставалось много, и Константин Эдуардович с увлечением занимается созданием своей небольшой мастерской и снова бесконечными опытами. После переезда в Рязань в 1879 г. Циолковский сдает установленные экзамены для получения соответствующего диплома, дающего право преподавания в начальных школах, и через год получает должность учителя арифметики и начальной геометрии в уездном начальном училище в г. Боровске. Так началась педагогическая карьера Константина Эдуардовича, продолжавшаяся 40 лет.

Будучи учителем, Циолковский остается верен себе и все свободное время и средства тратит на физические опыты, на изготовление различных моделей, устройств и механизмов. Понятно, что у Циолковского установились отличнейшие отношения с ребятами-учениками, обожавшими изобретательного учителя. Надо отметить, что, несмотря на его органический недостаток - потерю слуха, Циолковский был хорошим учителем. После Боровска, где Константин Эдуардович прожил 12 лет, он перевелся в г. Калугу, там безвыездно и прожил до своей смерти.

1903 г. Публикация труда "Исследование мировых пространств реактивными приборами". В этом пионерском труде Циолковский:

  1. впервые в мире описал основные элементы реактивного двигателя;
  2. пришёл к выводу, что твёрдые виды топлива не годится для космических полётов, и предложил двигатели на жидком топливе;
  3. полностью доказал невозможность выхода в космос на аэростате или с помощью артиллерийского орудия;
  4. вывел зависимость между весом топлива и весом конструкций ракеты для преодоления силы земного тяготения;
  5. высказал идею бортовой системы ориентации по Солнцу или другим небесным светилам;
  6. проанализировал поведение ракеты вне атмосферы, в среде, свободной от тяготения.

О своём смысле жизни Циолковский говорил так:

“Основной мотив моей жизни – не прожить даром, продвинуть человечество хоть немного вперёд. Вот почему я интересовался тем, что не давало мне ни хлеба, ни силы, но я надеюсь, что мои работы, может быть скоро, а может быть и в отдалённом будущем, дадут горы хлеба и бездну могущества…человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе всё околосолнечное пространство”.

Так на берегах Оки взошла заря космической эры. Правда, результат первой публикации оказался совсем не тот, какого ожидал Циолковский. Ни соотечественники, ни зарубежные ученые не оценили

2. Этап практической космонавтики. Королев С.П.- конструктор в области ракетостроения и космонавтики.

КОРОЛЕВ Сергей Павлович (1907-1966) - советский ученый и конструктор в области ракетостроения и космонавтики, главный конструктор первых ракет-носителей, ИСЗ, пилотируемых космических кораблей, основоположник практической космонавтики, академик АН СССР, член президиума АН СССР, дважды Герой Социалистического Труда...

Королев - пионер освоения космоса. С его именем связана эпоха первых замечательных достижений в этой области. Талант выдающегося ученого и организатора позволил ему на протяжении многих лет направлять работу многих НИИ и КБ на решение больших комплексных задач. Научные и технические идеи Королева нашли широкое применение в ракетной и космической технике. Под его руководством создан первый космический комплекс, многие баллистические и геофизические ракеты, запущена первая в мире межконтинентальная баллистическая ракета, ракета-носитель "Восток" и ее модификации, искусственный спутник Земли, осуществлены полеты КК "Восток" и "Восход", на которых впервые в истории совершен космический полет человека и выход человека в космическое пространство; созданы первые КА серий "Луна", "Венера", "Марс", "Зонд", ИСЗ серий "Электрон", "Молния-1" и некоторые ИСЗ серии "Космос"; разработан проект КК "Союз". Не ограничивая свою деятельность созданием РН и КА, Королев, как главный конструктор осуществлял общее техническое руководство работами по первым космическим программам и стал инициатором развития ряда прикладных научных направлений, обеспечивающих дальнейший прогресс в создании РН и КА. Королев воспитал многочисленные кадры ученых и инженеров.

Учёными космической эры по праву можно назвать Николая Егоровича Жуковского, Ивана Всеволодовича Мещерского, Фридриха Артуровича Цандера, Мстислава Всеволодовича Келдыша, и многих других.

3. Первый искусственный спутник Земли и полеты животных.

04.10.1957. С космодрома Байконур осуществлен пуск ракеты-носителя "Спутник", которая вывела на околоземную орбиту Первый в мире искусственный спутник Земли. Этот старт открыл космическую эру в истории человечества.

19.08.1960 был запущен Второй корабль-спутник типа "Восток", с собаками Белка и Стрелка, а вместе с ними 40 мышей, 2 крысы, различные мухи, растения и микроорганизмы 17 раз облетели вокруг Земли и приземлились.

Животные в космосе.

Хэм - первый шимпанзе-астронавт. 31 января 1961 года Хэм был помещён в космический корабль “Меркурий-Редстоун 2” и запущен в космос с космодрома на мысе Канаверал. Полёт Хэма был последней репетицией перед первым суборбитальным полётом американского астронавта в космос.

Белка и Стрелка – собаки, запущенные в космос на советском корабле Спутник -5,прототипе космического корабля Восток и находившиеся там с 19 по 20 августа 1960 года. Впервые в мире живые существа, побывав в Космосе, возвратились на Землю после орбитального полёта. Через несколько месяцев у Стрелки родились шесть здоровых щенков. Одного из них попросил лично Никита Сергеевич Хрущёв. Он отправил его в подарок Жаклин Кеннеди, жене президента США Джона Кеннеди.
Целью эксперимента по запуску животных в космос была проверка эффективности систем жизнеобеспечения в космосе и исследование космического излучения на живые организмы, для изучения различного рода биологических процессов, эффектов микрогравитации и других целей.

4 Юрий Гагарин – первый человек в космосе.

Мы, советские космонавты,

Проложившие первые борозды

в космической целине, всегда

Будем рады сотрудничать

с исследователями просторов Вселенной

Представителями всех стран и народов –

в интересах мира и дружбы на нашей планете.

Ю.А.Гагарин.

12.04.1961. Этот день стал днем торжества человеческого разума. Впервые в мире космический корабль с человеком на борту ворвался в просторы Вселенной. Ракета-носитель "Восток" вывела на околоземную орбиту советский космический корабль "Восток" с советским космонавтом Юрием Гагариным. После полёта на корабле “Восток” Ю. А. Гагарин (фото 2) стал самым известным человеком на планете. О нём писали все газеты мира

Первый космонавт планеты родился 9 марта 1934 года в городе Гжатск (ныне Гагарин) Гжатского (ныне Гагаринского) района Смоленской области в семье колхозника. "Семья, в которой я родился, - писал позднее Юрий Алексеевич, - самая обыкновенная; она ничем не отличается от миллионов трудовых семей нашей Родины".
Первые годы своей жизни Юрий провел в деревне Клушино, где жили его родители: отец - Алексей Иванович, и мать Анна Тимофеевна. В младые годы был самым обыкновенным ребенком, ничем не отличавшимся от своих сверстников: по мере своих сил помогал родителям, был непременным участником всех детских деревенских забав, иногда шалил.
Безоблачное детство будущего покорителя космических просторов было прервано начавшейся Великой Отечественной войной. 1 сентября маленький Юрий пошел в первый класс Клушинской неполной средней школой, а уже 12 октября занятия были прерваны - гитлеровские войска оккупировали село.
Долгих два года пробыли немецко-фашистские войска в Клушино и два года маленький Юрий видел все ужасы, присущие войне.
24 мая 1945 года семья Гагариных переехала из Клушино в город Гжатск (ныне Гагарин), где Юрий продолжил свое обучение.
С отличием окончил ремесленное училище по специальности формовщик-литейщик. Своей рабочей профессией Юрий Алексеевич гордился всю жизнь.
Окончив училище и получив специальность, Гагарин решает продолжить учебу и уже в августе 1951 года становится студентом Саратовского индустриального техникума.
Годы учебы летели незаметно и были до предела спрессованы разнообразными занятиями. Кроме учебы и производственной практики, много времени отнимала комсомольская работа, спорт. Именно в те годы Гагарин увлекся авиацией и 25 октября 1954 года впервые пришел в Саратовский аэроклуб.

27 октября 1955 года Октябрьским райвоенкоматом города Саратова Юрий Алексеевич был призван в ряды Советской Армии и направлен в город Оренбург на учебу в 1-е Чкаловское военно-авиационное училище летчиков имени К.Е.Ворошилова. Едва надев военную форму, Гагарин понял, что с небом будет связана вся его жизнь. Это оказалось той стезей, к которой стремилась его душа.
Незаметно пролетели два года в стенах училища, заполненные полетами, боевой подготовкой и краткими часами отдыха. И вот 25 октября 1957 года училище закончено.
В конце 1957 года Гагарин прибыл к месту своего назначения - истребительный авиационный полк Северного флота. Потекли армейские будни: полеты в условиях полярного дня и полярной ночи, боевая и политическая подготовка. Летать Гагарин любил, летал с удовольствием и, вероятно, так бы и продолжалось еще много лет, если бы не начавшийся среди молодых летчиков-истребителей набор для переучивания на новую технику. Тогда еще никто открыто не говорил о полетах в космос, поэтому космические корабли именовали "новой техникой".


9 декабря 1959 года Гагарин написал заявление с просьбой зачислить его в группу кандидатов в космонавты. Уже через неделю его вызвали в Москву для прохождения всестороннего медицинского обследования в Центральном научно-исследовательском авиационном госпитале. В начале следующего года последовала еще одна специальная медкомиссия, которая признала старшего лейтенанта Гагарина годным для космических полетов. 3 марта 1960 года приказом Главнокомандующего ВВС К.А.Вершинина зачислен в группу кандидатов в космонавты, а с 11 марта приступил к тренировкам.
Их было 20 молодых летчиков, которым предстояло готовиться к первому полету в космос. Гагарин был одним из них. Когда началась подготовка, никто не мог даже предположить, кому из них предстоит открыть дорогу к звездам. Это потом, когда полет стал реальностью, когда более или менее стали ясны сроки этого полета, выделилась группа из шести человек, которых стали готовить по иной, чем остальных, программе.
А за четыре месяца до полета практически всем стало ясно, что полетит именно Гагарин. Никто из руководителей советской космической программы никогда не говорил, что Юрий Алексеевич был подготовлен лучше, чем другие. Выбор первого определялся многими факторами, причем физиологические показатели и знание техники не были доминирующими. И Сергей Павлович Королев, который внимательно следил за подготовкой, и руководители Оборонного отдела ЦК КПСС, курировавшие космические разработки, и руководители Министерства общего машиностроения и Министерства обороны прекрасно понимали, что первый космонавт должен стать лицом нашего государства, достойно представляющим Родину на международной арене. Наверное, именно эти причины и заставили сделать выбор в пользу Гагарина, доброе лицо и открытая душа которого покоряли всех, с кем ему приходилось общаться. А последнее слово оказалось за Никитой Сергеевичем Хрущевым, бывшим в ту пору Первым секретарем ЦК КПСС. Когда ему принесли фотографии первых космонавтов, он без колебаний выбрал Гагарина.
Но чтобы это произошло, Гагарину и его товарищам пришлось пройти путь длинною в год, наполненный нескончаемыми тренировками в сурдо- и барокамерах, на центрифугах, на других тренажерах. Эксперимент шел за экспериментом, парашютные прыжки сменялись полетами на истребителях, на учебно-тренировочных самолетах, на летающей лаборатории, в которую был переоборудован Ту-104.
Но вот все это позади и наступил день 12 апреля 1961 года. Лишь посвященные знали, что должно было произойти в этот обычный весенний день. Еще меньше людей знали, кому суждено перевернуть всю историю человечества и стремительно ворваться в чаяния и помыслы человечества, навсегда оставшись в памяти как первый человек, преодолевший земное притяжение.
12 апреля 1961 года в 9 часов 7 минут по московскому времени с космодрома Байконур стартовал космический корабль "Восток" с пилотом-космонавтом Юрием Алексеевичем Гагариным на борту. Спустя всего 108 минут космонавт приземлился неподалеку от деревни Смеловки в Саратовской области.

За свой полет Юрий Алексеевич Гагарин был удостоен званий Герой Советского Союза и "Летчик-космонавт СССР", награжден орденом Ленина.
Спустя два дня Москва приветствовала героя космоса. На Красной площади прошел многолюдный митинг, посвященный осуществлению первого в мире космического полета. Тысячи людей хотели своими глазами увидеть Гагарина.
Уже в конце апреля Юрий Гагарин отправился в свою первую зарубежную поездку. "Миссия мира", как иногда называют поездку первого космонавта по странам и континентам, продолжалась два года. Гагарин посетил десятки стран, встретился с тысячами людьми. Встретиться с ним считали за честь короли и президенты, политические деятели и ученые, артисты и музыканты.

К счастью для нас Юрий Алексеевич довольно быстро переболел звездной болезнью, и все больше времени стал уделять работе в Центре подготовки космонавтов. С 23 мая 1961 года Гагарин командир отряда космонавтов. А уже осенью 1961 года он поступил в Военно-воздушную инженерную академию имени Н.Е.Жуковского, чтобы получить высшее образование.
20 декабря 1963 года Гагарин был назначен заместителем начальника Центра подготовки космонавтов.
Но больше всего ему хотелось летать. К летной подготовке он вернулся в 1963 году, а к новому космическому полету стал готовиться летом 1966 года. В те годы в Советском Союзе началась реализация "лунной программы". Одним из тех, кто стал готовиться к полету на Луну, стал и Гагарин.

1968 год стал последним в жизни Гагарина. 17 февраля он защитил диплом в Академии имени Н.Е.Жуковского. Продолжал готовиться к новым полетам в космос.
С большим трудом добился разрешения самостоятельно пилотировать самолет. 27 марта 1968 года был первый такой полет. И последний… Самолет разбился вблизи деревни Новоселово Киржачского района Владимирской области.
Обстоятельства той катастрофы так до конца и не выяснены. Есть много версий, начиная от ошибки пилотирования и кончая вмешательством инопланетян. Но чтобы не произошло в тот день, ясно только одно - погиб первый космонавт планеты Земля Юрий Алексеевич Гагарин.
Спустя три дня мир простился со своим героем. Выступая на траурном митинге на Красной площади, президент Академии наук СССР М.В.Келдыш сказал:
"Подвиг Гагарина явился громадным вкладом в науку, он открыл новую эпоху в истории человечества - начало полетов человека в космос, дорогу к межпланетным сообщениям. Весь мир оценил этот исторический подвиг как новый грандиозный вклад советского народа в дело мира и прогресса".
Именем Гагарина назван кратер на Луне и малая планета.
Всего 108 минут продолжался полет Гагарина, но не количество минут определяет вклад в историю освоения космоса. Он был первым и останется им навсегда.

5. Терешкова В.В.- первая женщина космонавт.

Валентина Владимировна (родилась 6 марта , в Ярославской области ) - советский космонавт , первая женщина-космонавт Земли, Герой Советского Союза .

Окончила Военно-воздушную инженерную академию им. Н. Е. Жуковского с отличием, стала кандидатом технических наук, профессором, автором более 50 научных работ. Имеет звание генерал-майора авиации, была депутатом Верховного Совета СССР , членом ЦК КПСС . Женщина столетия.

Одновременно с «Восток-6» в космосе находился космический корабль «Восток-5» , который пилотировал космонавт Быковский, Валерий Фёдорович . В этом совместном вылете решались задачи медицинского, технического и политического характера. Изучалось как влияет космический полёт на организмы мужчины и женщины, в частности в этом полёте была окончательно решена проблема питания космонавтов. Космонавты имели 4-х разовое питание, состоящее из различных натуральных продуктов, и стало ясно, что космонавт может нормально питаться самой разной земной пищей.

Специально для полёта Терешковой была разработана конструкцию скафандра приспособленная для женского организма, так же некоторые элементы корабля были изменены под возможности женщины.

Больше всего времени заняли эксперименты по радиосвязи. Космонавты выходили на связь с Землёй на коротких и ультракоротких волнах, также вели радиообмен между собой координируя свои действия и сравнивая результаты наблюдений.

Также этот полёт использовался для пропаганды достижений социализма , во-первых, демонстрировалось, что женщины имеют в СССР те же возможности, что и мужчины, а во-вторых, полёт доказывал надёжность советской космической техники, которая символизировала надёжность всего советского строя.

16 июня 1963 года в 12 часов 30 минут по московскому времени в Советском Союзе на орбиту спутника Земли выведен космический корабль "Восток-6" впервые в мире пилотируемый женщиной - гражданкой Советского Союза космонавтом Терешковой Валентиной Владимировной.

В этом полете будет продолжено изучение влияния различных факторов космического полета на человеческий организм, в том числе будет проведен сравнительный анализ воздействия этих факторов на организмы мужчины и женщины.

Этот полёт доказывал надёжность советской космической техники, которая символизировала надёжность всего советского строя.

6 . Леонов Алексей Архипович (см. фото 3)

Выход человека в открытое космическое пространство .

Космонавт России. Родился 30 мая 1934 года в селе Листвянка Тисульского района Кемеровской области в семье шахтера. Там же прошли его детские годы. После окончания Великой Отечественной войны вся семья перебралась в Калининград (бывший Кенигсберг). В 1953 году окончил среднюю школу и поступил в Чугуевское военное авиационное училище летчиков. После окончания училища проходил службу в авиационных частях Военно-воздушных сил СССР. В 1959 году прошел медицинский отбор для зачисления в отряд советских космонавтов, однако перед окончательной медицинской комиссией в феврале 1960 года передумал и решил возвратиться в свою часть для продолжения службы. Друзья уговорили его остаться и в марте 1960 года был зачислен в отряд советских космонавтов (1960 Группа ВВС № 1). Прошел полный курс подготовки к полетам на кораблях типа Восток, а затем типа Восход.

Свой первый космический полет совершил 18 - 19 марта 1965 года в качестве второго пилота космического корабля Восход-2. 18 марта 1965 года первым в мире совершил выход в открытый космос. Во время выхода проявил большое мужество, особенно в нештатной ситуации, когда разбухший космический скафандр препятствовал возвращению космонавта в космический корабль. Выход в открытый космос продолжался 12 минут 9 секунд. При возвращении космического корабля на Землю отказала система ориентации и космонавты, вручную сориентировав корабль, совершили посадку в запасном районе. Полет продолжался 1 сутки 2 часа 2 минуты 17 секунд. После совершения космического полета продолжил подготовку в отряде космонавтов. В 1967 году готовился в составе группы к полетам на Луну. Сначала был назначен командиром первого экипажа для облета Луны, а затем командиром первого экипажа по программе посадки на Луну. Если бы лунная программа СССР была реализована, Леонов должен был стать первым советским космонавтом, побывавшим на Луне. После закрытия лунной программы СССР, продолжил подготовку к космическим полетам по программе ДОС (долговременная орбитальная станция).

Первый выход в космос был совершён советским космонавтом Алексеем Архиповичем Леоновым 18 марта 1965 года с борта космического корабля “Восход-2” с использованием гибкой шлюзовой камеры.

Во время выхода проявил большое мужество, особенно в нештатной ситуации, когда разбухший космический скафандр препятствовал возвращению космонавта в космический корабль. Выход в открытый космос продолжался 12 минут 9 секунд, по его итогам был сделан вывод о возможности человека выполнять различные работы в открытом космосе. При возвращении космического корабля на Землю отказала система ориентации и космонавты, вручную сориентировав корабль, совершили посадку в запасном районе.

7. “Луна, Марс – Дале везде».

« Маленький шаг для одного человека
большой шаг для всего человечества» - сказал Нил Армстронг, ступая на поверхность Луны

Сама программа пилотируемого полёта на Луну называлась “Аполлон”. Луна - единственное внеземное тело, на котором побывал человек. Первая посадка произошла 20 июля 1969 года ; последняя - в декабре 1972 года. Первым человеком, ступившим на поверхность Луны, стал американец Нил Армстронг (21 июля 1969 года). Луна также - единственное небесное тело, образцы которого были доставлены на Землю.

СССР отправил на Луну два радиоуправляемых самоходных аппаратов, “Луноход-1” в ноябре 1970 года и “Луноход-2” в январе 1973.

“Пионер-10” - беспилотный космический аппарат НАСА, предназначенный, главным образом, для изучения Юпитера . Это был первый аппарат, пролетевший мимо Юпитера и сфотографировавший его из космоса. Аппарат-“близнец” “Пионер-11” исследовал также Сатурн.

В 1978 году в космос отправились последние два зонда серии “Пионер”. Это были зонды для исследования Венеры “Пионер-Венера-1” и “Пионер-Венера-2”

8. Международные полеты в космос.

Междунаро́дная косми́ческая ста́нция (МКС ) - международная орбитальная станция, используемая как многоцелевая космическая лаборатория.

К концу на станции побывало 10 долгосрочных экспедиций, в них было 13 космонавтов от России и 13 астронавтов от НАСА. Еще 8 космонавтов от России и 30 от НАСА были с экспедициями посещения. Из этих тридцати человек пять - европейские космонавты и два - космические туристы .

На станции проводят научные исследования космоса , атмосферы и земной поверхности, изучение поведения человеческого организма в длительных космических полетах, разрабатывают технологии получения и анализа свойств новых материалов и биопрепаратов, а также отрабатывают пути и методы дальнейшего освоения космического пространства.

9. Космос Будущего.

Представим себе наше недалекое будущее. 2025 г. Просторы вселенной бороздят больше долговременные орбитальные станции. Экипаж станции – 25 человек. Но вот возникает необходимость посетить соседнюю станцию для оказания помощи, пополнения жизненно важных ресурсов, а может просто нанести визит вежливости. Для межпланетной связи, связи с Землей, как шлюпки на корабле, будут иметься вспомогательные реактивные аппараты. Специальные космические такси будут совершать разведывательные посадки на неизвестные планеты. Отделившись от корабля – матки, они отправляются к планете и, выполнив задание, возвратятся на орбиту.

Стремительное развитие космической техники в той же степени реально, как и удивительно. Космическое пространство всегда окрыляло человеческую фантазию, вызывало бесконечное множество предложений и гипотез. Одни из них подтверждались практикой, от других приходилось отказываться, немало и таких, которые до сих пор занимают и волнуют умы ученых, посвятивших себя космонавтики.

Штурм космоса только начался. Но то, что уже достигнуто, открывает для человеческой мысли широчайшие просторы. Пройдет время – и, может быть земляне начнут совершать регулярные рейсы в космос, найдя пути к далеким планетам. И гарантия этого – осуществленные фантазии людей, создавших космические корабли и поручившим своим первопроходцам проверить их прочность, смело шагнуть в бездну Великого космоса.

Заключение.

Все знают, каким великим подвигом была жизнь К. Э. Циолковского. «Основной мотив моей жизни,- писал он,- не прожить даром жизнь, продви нуть человечество хоть немного вперед. Вот почему я интересовался тем, что не давало мне ни хлеба, ни силы, но я надеюсь, что мои работы, может быть скоро, а может быть и в отдаленном будущем, дадут обществу горы хлеба и бездну могущества».

Вступление человечества в космическую эру было подготовлено всей его предшествующей историей. Это закономерный процесс развития производи тельных сил, объективно существующих законов развития общества на определенном этапе.

Развитие космических" исследований - это накопление знаний, которые увеличивают экономическое могущество человека.

Уже в настоящее время космические аппараты широко используются в народном хозяйстве. Например, использование космической техники в системах связи существенно повысило ее эффективность, позволило связать между собой все уголки земного шара, объединить всех людей Земли в одну аудиторию.

Космическая система связи со спутниками на так называемой стационарной орбите высотой около 36000 км обладает большими достоинствами. Со стационарной орбиты обеспечивается большая зона охвата поверхности. Один стационарный спутник может обеспечить кругло суточную связь между пунктами, удаленными друг от друга на расстояние около 17000 км.

Но одним стационарным спутником невозможно обеспечить связь по всей территории Советского Союза, например Камчатки и Чукотки с Москвой.

Поэтому обратились к спутникам другого типа, которые обращаются вокруг Земли по сильно вытянутым эллиптическим орбитам с высотой апогея над Северным полушарием 40000 км и перигея 500 км. Три таких спутника способны обеспечить круглосуточную связь на всей территории нашей страны, включая и полярные области.

Первый из них, «Молния-1», был выведен в космос в апреле 1965 г. Тогда это произвело сенсацию - жители Владивостока впервые смотрели военный парад и демонстрацию на Красной площади одновременно с москвичами.

Создание специальных спутников Земли, способных собирать необходимую для геологии информацию, позволило получить качественно новые данные о многих процессах, формирующих строение и состав нашей планеты. Космическое фотографирование может давать информацию для выявления полезных ископаемых. При этом доступной становится любая точка земной поверхности.

Очень много полезной информации от искусственных спутников Земли получает сельское хозяйство. Космические системы наблюдения за поверхностью Земли позволяют в масштабе всей нашей страны оперативно получать объективную информацию о климатических и погодных условиях, что так необходимо для развития земледелия и животноводства. Не представ ляет больших трудностей наблюдение за снежным покровом, вскрытием рек, и паводками, температурой почвы. Принципиально возможно наблюдение из космоса за подготовкой полей к севу, за всходами посевных культур, их цветением, созреванием и уборкой. Особую роль космические средства могут сыграть при охране лесов от пожара.

Для дальнейшего развития народного хозяйства важно улучшить точность прогнозов погоды, предсказания землетрясений и основное - нужно уточнить строение недр региона, выявить новые районы, перспективные для поиска полезных ископаемых, нефти и газа. Изучение региона из космоса поможет.

Планированию и осуществлению международных проектов, таких, как совместная разведка и эксплуатация источников минерального сырья, про дуктов океана, рациональное совместное использование ресурсов рек, протекающих по территории нескольких государств (например, Дунай).

В ближайшие десятилетия людям Земли предстоит решать такие фундаментальные проблемы, как интенсивный рост народонаселения, истощение земных ресурсов, энергетический кризис.

Разрешить все эти проблемы в земных условиях практически невозможно. Космос должен дать человечеству жизненное пространство, вещество и энер гию. Задачи, стоящие перед космонавтикой, способствуют созданию новых ракетно-космических средств, для решения более сложных задач.

Но какими бы не были успехи космонавтики, никогда не забыть тот день, когда Земля встречала первого космонавта нашей планеты, ее любимца, советского гражданина Юрия Алексеевича Гагарина.

Литература:

  1. А.П.Романов, В.С. Губарев. Конструкторы. М., Политиздат, 1989.
  2. В.П. Казневкий. Аэродинамика в природе и технике. Книга для внеклассного чтения учащихся 8 – 10 кл. М., Просвещение. 1985 – 127 с., ил.
  3. Ф.М. Дягилев. Из истории физики и жизни ее творцов. Книга для учащихся. М., Просвещение, 1986. – 255с., ил.
  4. Тайны вселенной. Астрономия и космос. Энциклопедия. М., Росмен, 2002.
  5. Хочу все знать. Лабиринты космоса. М., « Астрель», 2001.
  6. В. Степанов. Юрий Гагарин. Жизнь замечательных людей. М., Молодая гвардия, 1987.
  7. Детская энциклопедия. Я познаю мир. Космос. М., оо « Издательство АСТ» , 2001, 448 с., ил.
  8. Космонавтика СССР. М. Машиностроение « Планета» 1987.
  9. Космос – моя работа. Сборник документов и художественных произведений. М., Профиздат..1099.
  10. В.А.Алексеев, А.А.Еременко, А.В.Ткачев. Космическое содружество. М., Машинострой, 1988.
  11. Лебедев Л.А. Сыны голубой планеты. М., Политиздат, 1973.
  12. Лидия Обухова. Вначале была Земля. М,» Современник», 1973.
  13. А.Губарев. Орбита жизни. М., Молодая гвардия., 1990.
  14. В.Волков. Шагаем в небо. М., Молодая гвардия, 1973.
  15. Герман Титов. Голубая моя планета. Документальная повесть. М., Воениздат, 1977.
  16. Евгений Хрунев. Покорение невесомости. М., Воениздат., 1976.
  17. www . cosmoworid .ru
  18. www . cosmos . info
  19. ru. Wikipedia. orgf
  20. www . h- cosmos . ru

Во второй половине XX в. человечество ступило на порог Вселенной - вышло в космическое пространство. Дорогу в космос открыла наша Родина. Первый искусственный спутник Земли, открывший космическую эру, запущен бывшим Советским Союзом, первый космонавт мира - гражданин бывшего СССР.

Космонавтика - это громадный катализатор современной науки и техники, ставший за невиданно короткий срок одним из главный рычагов современного мирового процесса. Она стимулирует развитие электроники, машиностроения, материаловедения, вычислительной техники, энергетики и многих других областей народного хозяйства.

В научном плане человечество стремится найти в космосе ответ на такие принципиальные вопросы, как строение и эволюция Вселенной, образование Солнечной системы, происхождение и пути развития жизни. От гипотез о природе планет и строении космоса, люди перешли к всестороннему и непосредственному изучению небесных тел и межпланетного пространства с помощью ракетно-космической техники.

В освоении космоса человечеству предстоит изучит различные области космического пространства: Луну, другие планеты и межпланетное пространство.

Активные, приключенческие, развлекательные, экскурсионные туры по России. Города Золотого кольца России, Тамбов, Санкт-Петербург, Карелия, Кольский полуостров, Калининград, Брянск, Великий Новгород, Великий Устюг, Казань, Владимир, Вологда, Орел, Кавказ, Урал, Алтай, Байкал, Сахалин, Камчатка и в другие города России.

СОВРЕМЕННАЯ КОСМОНАВТИКА

Прошло более полувека с тех пор, как 4 октября 1957 года межконтинентальная баллистическая ракета Р-7 конструкции С.П. Королева, стартовавшая с Байконура, вывела в космос первый искусственный спутник Земли ПС-1 массой 83,6 кг. Вскоре, спустя три с половиной года, люди с восторгом встретили известие о первом полете человека в космос. Кроме всеобщего ликования, одновитковый орбитальный полет гражданина СССР Ю.А. Гагарина вызвал немалый переполох в мире и положил начало космической гонке между Советским Союзом и Соединенными Штатами Америки, которая завершилась 20 июля 1969 года высадкой Нейла Армстронга и Эдвина Олдрина на лунную поверхность.

А. Максимов, ИТПМ

Для современной молодежи эти события само собой разумеющиеся исторические факты, а для живых свидетелей и участников первые победы воспринимаются ностальгически, как время больших надежд, искреннего энтузиазма и величайших свершений в науке и технике. Ведь прошло всего десять с небольшим лет с момента завершения самой кровопролитной мировой войны, унесшей жизни более 50 миллионов человек, не успели еще сгладиться рубцы от потерь родных и близких, а человечество во главе с Советским Союзом уже вырвалось в космос и приступило к подготовке пилотируемых полетов на Луну и Марс.

В первые годы космической эры чуть ли не каждый день приносил успехи: запуск первого спутника, первого лунника, первую фотосъемку обратной стороны Луны, старты к Марсу и Венере, первый выход человека в открытое космическое пространство, создание первых спутников связи и метеорологических спутников, спутников-разведчиков и т.д. Причем большинство этих достижений принадлежало Советскому Союзу, его талантливым ученым и конструкторам. Казалось, такому ходу событий не будет конца, и недалек тот день, когда люди действительно отправятся в первое межзвездное путешествие на встречу с братьями по разуму...

Однако действительность оказалась гораздо прозаичней, чем представляли себе первые творцы космических достижений и большинство простых людей. Сразу же после успешных экспедиций американских «Аполлонов» на Луну перед учеными и руководителями космических держав -- СССР и США -- встала серьезная проблема: куда и как двигаться дальше? Охватить всё и вся, как пытались сделать ученые и конструкторы обеих стран в первые годы освоения космического пространства, практически стало уже невозможно.

В условиях «холодной войны» основные усилия военных с самого начала были направлены на использование космоса для глобальной связи, фото- и радиотехнической разведки, навигации и размещения на околоземной орбите отдельных видов вооружений. Правда, достижения космонавтики не обошли стороной и гражданскую сферу деятельности -- стали возможны дальнейшее расширение радио- и телевещания в масштабах всей планеты, глобальные метеонаблюдения и дистанционное зондирование поверхности Земли в интересах не только отдельных государств, но и всего населения мира.

На рубеже 70-х годов ХХ века руководители двух космических держав всё еще имели теоретическую возможность договориться об объединении своих усилий для подготовки совместного пилотируемого полета на Марс, однако этого не случилось по многим причинам. К тому времени США уже одержали победу в космической гонке, и им не было нужды и дальше напрягаться, как прежде, ради неизвестно для чего нужной марсианской экспедиции. К тому же, американцы уже по уши успели завязнуть в бесславной вьетнамской войне, а руководители Советского Союза всё еще пытались взять верх над «мировым империализмом» в гонке вооружений, не оставляя почти никаких средств на развитие гражданского сектора экономики, не говоря уже о каких-то мифических полетах человека на Марс. Нереализованная тогда идея полетов на Марс вновь возродилась лишь в начале нынешнего века.

Хотя к 70-м годам обе страны уже накопили столько ракетно-ядерного оружия, что теоретически хватило бы на многократное уничтожение всего живого на Земле, машина гонки вооружений крутилась всё сильнее и сильнее. К тому же, вместо своевременного перехода на соревнование на мирном поприще СССР вдобавок ввязался в соревнование по созданию прототипа крайне дорогостоящей системы многоразового использования «Спейс-Шаттл» США в виде «Энергии-Бурана» и этим резко «подсадил» научные исследования в космосе.

Бешеные темпы гонки вооружений на земле, на море и под водой, в воздухе и в космосе первой не выдержала более слабая экономика Советского Союза. Вместо вожделенной победы над «мировым империализмом» недальновидные правители страны добились, в конечном итоге, совершенно противоположного: вначале -- почти полного развала гражданского сектора экономики, в мирные дни доведя своих граждан чуть ли не до грани голода, когда большинство товаров и продуктов питания стали дефицитом и распределялись по талонам, а затем -- мгновенного развала второй державы мира со всеми вытекающими из этого последствиями. Вместо единой и могучей в военном отношении страны, с мнением которой волей или неволей считались многие, на карте мира появилось более десятка слаборазвитых стран, подчас руководимых коррумпированными или клановыми правителями.

Россия, провозгласившая себя наследницей СССР, в смутные времена 90-х годов очень быстро утратила передовые позиции в космонавтике и вскоре превратилась в «космического извозчика». Если в период 70--80-х годов Советский Союз ежегодно производил около ста и более космических запусков, то уже к 1996 году их количество постепенно упало до 27 и с тех пор держится примерно на том же уровне, причем около трети из них -- чисто коммерческие пуски в интересах зарубежных заказчиков. Несмотря на предпринимаемые в последние годы усилия, восстановить прежние группировки космических аппаратов различных назначений так и не удается. Печальным примером тому служит ситуация с системой навигации «Глонасс», для полноценной работы которой требуется не менее 24 исправных спутников на орбите. Пока «Глонасс» буксует. Американская система аналогичного назначения GPS (Глобальная система позиционирования) успела завоевать практически весь мир. Теперь даже производители сотовых телефонов начали «вшивать» приемники GPS в свои изделия, практически не оставляя шансов на широкое использование «Глонасса» хотя бы в пределах территории России. Это очередной типичный пример упущенных возможностей...

Российская космонавтика всё еще мучается в попытках восстановления до необходимого уровня, а пилотируемая ее часть занята, в основном, лишь обслуживанием Международной космической станции (МКС). Несмотря на многочисленные начинания последнего десятилетия, Роскосмосу так и не удалось даже приступить к созданию нового пилотируемого корабля для давно уже назревшей замены заслуженного, но весьма тесного и не совсем комфортного «Союза», созданного более 40 лет назад.

Последние достаточно успешные полеты межпланетных аппаратов СССР «Вега-1» и «Вега-2» к комете Галлея с попутной доставкой спускаемых аппаратов на Венеру состоялись еще в 1984--1987 годах, т. е. четверть века назад. Предпринятые в июле 1988 года запуски двух «Фобосов» завершились потерей одного из них еще по пути к Марсу, а второго -- 27 марта 1989 года уже вблизи конечной цели полета, накануне сброса посадочных аппаратов на Фобос. Последний советский, ставший первым российским, межпланетный аппарат «Марс-96», в создании которого принимали участие более 20 стран, завершил свою весьма грустную историю на дне Тихого океана у берегов Чили спустя всего несколько часов после своего старта с космодрома Байконур 16 ноября 1996 года. С тех пор России так и не удалось создать и отправить в полет ни один межпланетный зонд отечественного производства, в то время как другие страны, включая Китай и Индию, добились на этом поприще впечатляющих успехов.

Запуск долгожданного российского межпланетного КА «Фобос-Грунт», создаваемого по программе доставки грунта со спутника Марса на Землю, ожидается в октябре-ноябре этого года. По договоренности с Китаем он должен доставить к Марсу в качестве попутного груза спутник «Инхо-1» («Светлячок») массой около 110 кг. Поскольку аппарат еще не готов, вновь впереди маячит угроза повторения ситуации с «Марсом-96», когда запуск отодвигался всё дальше и дальше...

За последние два-три десятилетия огромных успехов в исследовании планет Солнечной системы и Вселенной добились, прежде всего, конструкторы и ученые США, успешно осуществившие множество уникальных полетов к Марсу, Юпитеру, Сатурну и к нескольким астероидам и кометам. При этом особенно впечатляют длительность функционирования созданных ими аппаратов и достигнутая в полетах точность навигации, обеспечивающая им маневрирование на удалениях сотен миллионов и даже нескольких миллиардов километров от Земли с отклонениями всего в десятки и сотни метров.

Запущенные в августе и сентябре 1977 года аппараты «Вояджер-1» и «Вояджер-2» массой по 825 кг после пролета Юпитера, Сатурна, Урана и Нептуна последовали к границе Солнечной системы. Как ни удивительно, аппараты до сих пор продолжают работать и передавать научную информацию о характеристиках межзвездного пространства, хотя из-за истощения бортовых ядерных источников энергии давно уже отключено большинство их научных инструментов. Через несколько лет эти зонды окончательно пересекут условную границу Солнечной системы и станут первыми межзвездными аппаратами землян. 40000 лет спустя «Вояджер-1» достигнет окрестностей одной из звезд в созвездии Жирафа, а «Вояджер-2», двигаясь на 48 градусов ниже плоскости эклиптики, через 296000 лет пролетит мимо яркой звезды Сириус.

Более современный и лучше оснащенный КА «Галилей» массой 2702 кг, стартовавший 18 октября 1989 года с борта корабля многоразового применения «Атлантис», 7 декабря 1995 года вышел на сильно вытянутую эллиптическую орбиту вокруг Юпитера. За 8 лет этот космический аппарат совершил множество облетов Ганимеда, Каллисто, Европы и Ио, открыл более 20 неизвестных ранее спутников планеты и передал на Землю около 15 тысяч снимков. «Галилей» отработал в условиях сильнейшей радиации вплоть до полного израсходования своих запасов топлива и 21 сентября 2003 года совершил прощальный управляемый вход в атмосферу газового гиганта Солнечной системы.

Не менее знаменитый аппарат «Кассини» стартовой массой 5634 кг, разработанный по совместной программе Национального управления по исследованию космического пространства США (NASA), Европейского и Итальянского космических агентств, был запущен к Сатурну 15 октября 1997 года с помощью РН «Титан-4-Центавр». Из-за своей большой массы он вынужден был лететь по очень сложной траектории с двумя гравитационными маневрами у Венеры, а затем -- у Земли и Юпитера. «Кассини» вышел на орбиту спутника Сатурна 1 июля 2004 года и с тех пор успешно занимается исследованиями второй по массе планеты Солнечной системы, ее знаменитых колец и множества спутников. 14 января 2005 года успешно совершил посадку на поверхность Титана отделившийся от «Кассини» зонд «Гюйгенс» массой 318 кг. КА принимал от него научную информацию более 7 часов, а затем передал на Землю. По прикидкам инженеров, «Кассини» может проработать около Сатурна до 2017 года.

19 января 2006 года для изучения самой дальней планеты Плутона и его спутника Харона, а также нескольких тел из пояса Койпера, отправился в длительный полет межпланетный зонд «Новые горизонты» массой 478 кг. Начальная скорость отлета в 16207 м/с обеспечила его прилет к Юпитеру уже 28 февраля 2007 года. Совершив гравитационный маневр у планеты-гиганта, КА увеличил свою скорость до 23,3 км/с. Он окажется у Плутона в июле 2015 года.

С 3 августа 2004 года продолжает свой полет КА «Мессенжер», направившийся в противоположную сторону -- к самой ближней к Солнцу планете Меркурию. Совершив за 18 оборотов вокруг Солнца множество гравитационных маневров у Земли, Венеры и самого Меркурия, он выйдет на орбиту его спутника в марте 2011 года. Таким образом, с помощью космических аппаратов будут тщательно обследованы все планеты Солнечной системы и их спутники, а также несколько комет и астероидов.

Из всех небесных тел вплоть до последнего времени наибольшее внимание уделялось Марсу, на котором ученые надеялись обнаружить хоть какие-нибудь признаки жизни. Только с 25 сентября 1992 года по 4 августа 2007 года американцы запустили к Марсу 10 КА. Первый из них, «Mars Observer», был потерян 21 августа 1993 года из-за взрыва на борту за три дня до выхода на орбиту спутника Марса. Следующий аппарат «Mars Global Surveyor», запущенный 7 ноября 1996 года, проработал на марсианской орбите с 9 сентября 1997 года по 5 ноября 2006 года, а «Mars Pathfinder» 4 июля 1997 года доставил на поверхность рыжей планеты вездеходик массой 11,5 кг. Затем последовали две крупные неудачи, вызванные попытками NASA сэкономить свои средства. 23 сентября 1999 года из-за ошибки, неувязки метрических мер измерений, при торможении в атмосфере Марса сгорел «Mars Climate Orbiter», а спустя всего два с лишним месяца при посадке разбился «Mars Polar Lander». После этих аварий специалисты NASA вынуждены были полностью пересмотреть свои принципы проектирования и осуществления полетов последующих космических аппаратов.

Запущенные 7 апреля 2001 года, 10 июня и 8 июля 2003 года, 12 августа 2005 года КА «Mars Odyssey», КА «Mars Exploration Rover» и «Mars Reconnaissance Orbiter» всё еще продолжают свои исследования Марса с орбиты и на самой поверхности планеты. Марсоходы MER массой по 179 кг, получившие названия «Спирит» и «Оппортунити», с января 2004 года заняты поисками следов существования воды и каких либо форм жизни на Марсе хотя бы в прошлом. Аппарат «Phoenix», созданный для выполнения задач потерянного КА «Mars Polar Lander» и получивший по этой причине название «Феникс», стартовал 4 августа 2007 года и завершил свою работу в приполярном районе Марса 2 ноября прошлого года из-за резкого сокращения выработки электроэнергии после внезапно нагрянувших пылевых бурь.

Всё еще активно продолжает свои исследования и европейский «Mars Express», запущенный 2 июня 2003 года с помощью российской РН «Союз-Фрегат» и ставший спутником Марса 25 декабря того же года. Более солидный американский марсоход «Mars Science Laboratory» массой 925 кг и общей стоимостью более 2 миллиардов долларов должен отправиться в полет в 2011 году. Правда, теперь уже ученые надеются обнаружить жизнь в океане под толщей льда у спутника Юпитера -- Европы или в извержениях гейзеров спутника Сатурна -- Энцелада и планируют к ним новые полеты.

Весьма успешными оказались и запуски в 1998--2005 годах менее дорогостоящих аппаратов «NEAR», «Deep Space 1», «Stardust» и «Deep Impact» (США), предназначенных для исследований астероидов, комет и доставки на Землю образцов кометного вещества (stardust). В настоящее время на пути к своим целям находятся «Rosetta» Европейского космического агентства и «Dawn» США, стартовавшие 2 марта 2004 года и 27 сентября 2007 года для исследований кометы Чюрюмова-Герасименко (в 2014 г.) и малых планет Веста и Церера (в 2011 и 2015 гг.) соответственно.

Совсем недавно успели подключиться к межпланетным исследованиям Китай и Индия. В октябре 2007 и 2008 годов они запустили свои первые спутники Луны «Чаньэ-1» и «Чандраян-1». Несколько раньше этих аппаратов спутником Луны стала японская «Кагуя».

Последние десятилетия ознаменовались крупными успехами, связанными с работой космических телескопов «Хаббл», «Комптон», «Чандра», «Ньютон» и «Ферми». Эти крупные и дорогостоящие телескопы позволили охватить почти весь спектр электромагнитных волн, от инфракрасного диапазона до жесткого гамма излучения. Например, благодаря «Хабблу» удалось окончательно убедиться, что во Вселенной галактик столь же много, как и звезд на ночном небе. Было показано, что столкновения галактик довольно частое явление, а в центре многих галактик, в том числе и нашего Млечного Пути, находятся предсказанные теоретиками сверхмассивные «черные дыры». По-видимому, накапливаемые новые данные в скором будущем заставят ученых пересмотреть некоторые фундаментальные основы астрофизики и многие прежние теории и гипотезы о развитии планет, звезд и всей Вселенной.

Благодаря использованию космических, а в последнее время и оснащенных адаптивной оптикой более крупных наземных телескопов, к настоящему времени удалось открыть более 340 внесолнечных планет, вращающихся вокруг ближайших к Солнцу звезд. Более месяца назад, 7 марта, для поиска планет земного типа американцами был запущен телескоп «Кеплер», способный одновременно следить за изменением яркости тысяч звезд. До этого разработанные методы поиска планет по изменению светимости звезд или возмущений их орбит из-за недостаточной чувствительности аппаратуры позволяли обнаруживать только массивные планеты типа Юпитера, вращающиеся вблизи своих звезд. Ученым же более интересны планеты земного типа, на которых возможно существование живой материи.. история космонавтика российский ракета

За истекшие 10--15 лет были созданы и введены в эксплуатацию мощные ракеты-носители нового поколения «Ariane-5» (ЕКА, первый пуск 4.06.1996), «Atlas-5» и «Delta-4» (США, 21.08.2002 и 20.11.2002), H-2A (Япония, 29.08.2001) и «GSLV» (Индия, 18.04.2001). В настоящее время в США ведутся разработки РН «Ares-1» грузоподъемностью 25 тонн и «Ares-5» грузоподъемностью более 100 тонн, предназначенных для замены снимаемой с эксплуатации системы «Спейс Шаттл» и обеспечения пилотируемых полетов на Международную космическую станцию (МКС), а затем на Луну (к 2020 г.) и на Марс (после 2030 г.).

На этом фоне весьма серьезную озабоченность вызывает сильная задержка с созданием новых отечественных РН семейства «Ангара». По первоначальным планам первый испытательный запуск «Ангары» легкого класса должен был состояться еще в 2000 году, а воз, как говорится, и ныне там. Уже сняты с эксплуатации широко известные носители «Космос-3М» и «Циклон-3М», а заменить их пока нечем. За последние годы Россия довольствовалась лишь модернизацией тяжелого «Протона» конструкции В. Н. Челомея и «Союза» конструкции С. П. Королева. Усовершенствованный «Протон-М» Центра им. В. М. Хруничева впервые стартовал 7 апреля 2001 года, а самарский «Союз-2» -- 8 ноября 2004 года.

В 90-е годы как в России, так и в США по программам конверсии было создано множество РН легкого и сверхлегкого классов, но по ряду причин они практически остались без дела и в настоящее время используются крайне редко. Тем не менее, такого типа ракеты интенсивно создаются развивающимися странами. 2 февраля этого года с помощью собственной РН «Сафир-2» запустил небольшой спутник Иран. В апреле к членам космического клуба могла присоединиться и Северная Корея. Ведут разработки собственных РН также Бразилия и Южная Корея.

История освоения космоса - самый яркий пример торжества человеческого разума над непокорной материей в кратчайший срок. С того момента, как созданный руками человека объект впервые преодолел земное притяжение и развил достаточную скорость, чтобы выйти на орбиту Земли, прошло всего лишь чуть более пятидесяти лет - ничто по меркам истории! Большая часть населения планеты живо помнит времена, когда полёт на Луну считался чем-то из области фантастики, а мечтающих пронзить небесную высь признавали, в лучшем случае, неопасными для общества сумасшедшими. Сегодня же космические корабли не только «бороздят просторы», успешно маневрируя в условиях минимальной гравитации, но и доставляют на земную орбиту грузы, космонавтов и космических туристов. Более того - продолжительность полёта в космос ныне может составлять сколь угодно длительное время: вахта российских космонавтов на МКС, к примеру, длится по 6-7 месяцев. А ещё за прошедшие полвека человек успел походить по Луне и сфотографировать её тёмную сторону, осчастливил искусственными спутниками Марс, Юпитер, Сатурн и Меркурий, «узнал в лицо» отдалённые туманности с помощью телескопа «Хаббл» и всерьёз задумывается о колонизации Марса. И хотя вступить в контакт с инопланетянами и ангелами пока не удалось (во всяком случае, официально), не будем отчаиваться - ведь всё ещё только начинается!

Мечты о космосе и пробы пера

Впервые в реальность полёта к дальним мирам прогрессивное человечество поверило в конце 19 века. Именно тогда стало понятно, что если летательному аппарату придать нужную для преодоления гравитации скорость и сохранять её достаточное время, он сможет выйти за пределы земной атмосферы и закрепиться на орбите, подобно Луне, вращаясь вокруг Земли. Загвоздка была в двигателях. Существующие на тот момент экземпляры либо чрезвычайно мощно, но кратко «плевались» выбросами энергии, либо работали по принципу «ахнет, хряснет и пойдёт себе помаленьку». Первое больше подходило для бомб, второе - для телег. Вдобавок регулировать вектор тяги и тем самым влиять на траекторию движения аппарата было невозможно: вертикальный старт неизбежно вёл к её закруглению, и тело в результате валилось на землю, так и не достигнув космоса; горизонтальный же при таком выделении энергии грозил уничтожить вокруг всё живое (как если бы нынешнюю баллистическую ракету запустили плашмя). Наконец, в начале 20 века исследователи обратили внимание на ракетный двигатель, принцип действия которого был известен человечеству ещё с рубежа нашей эры: топливо сгорает в корпусе ракеты, одновременно облегчая её массу, а выделяемая энергия двигает ракету вперёд. Первую ракету, способную вывести объект за пределы земного притяжения, спроектировал Циолковский в 1903 году.

Вид на Землю с МКС

Первый искусственный спутник

Время шло, и хотя две мировые войны сильно замедлили процесс создания ракет для мирного использования, космический прогресс всё же не стоял на месте. Ключевой момент послевоенного времени - принятие так называемой пакетной схемы расположения ракет, применяемой в космонавтике и поныне. Её суть - в одновременном использовании нескольких ракет, размещённых симметрично по отношению к центру массы тела, которое требуется вывести на орбиту Земли. Таким образом обеспечивается мощная, устойчивая и равномерная тяга, достаточная, чтобы объект двигался с постоянной скоростью 7,9 км/с, необходимой для преодоления земного тяготения. И вот 4 октября 1957 года началась новая, а точнее первая, эра в освоении космоса - запуск первого искусственного спутника Земли, как всё гениальное названного просто «Спутник-1», с помощью ракеты Р-7, спроектированной под руководством Сергея Королёва. Силуэт Р-7, прародительницы всех последующих космических ракет, и сегодня узнаваем в суперсовременной ракете-носителе «Союз», успешно отправляющей на орбиту «грузовики» и «легковушки» с космонавтами и туристами на борту - те же четыре «ноги» пакетной схемы и красные сопла. Первый спутник был микроскопическим, чуть более полуметра в диаметре и весил всего 83 кг. Полный виток вокруг Земли он совершал за 96 минут. «Звёздная жизнь» железного пионера космонавтики продлилась три месяца, но за этот период он прошёл фантастический путь в 60 миллионов км!

Первые живые существа на орбите

Успех первого запуска окрылял конструкторов, и перспектива отправить в космос живое существо и вернуть его целым и невредимым уже не казалась неосуществимой. Всего через месяц после запуска «Спутника-1» на борту второго искусственного спутника Земли на орбиту отправилось первое животное - собака Лайка. Цель у неё была почётная, но грустная - проверить выживаемость живых существ в условиях космического полёта. Более того, возвращение собаки не планировалось… Запуск и вывод спутника на орбиту прошли успешно, но после четырёх витков вокруг Земли из-за ошибки в расчётах температура внутри аппарата чрезмерно поднялась, и Лайка погибла. Сам же спутник вращался в космосе ещё 5 месяцев, а затем потерял скорость и сгорел в плотных слоях атмосферы. Первыми лохматыми космонавтами, по возвращении приветствовавшими своих «отправителей» радостным лаем, стали хрестоматийные Белка и Стрелка, отправившиеся покорять небесные просторы на пятом спутнике в августе 1960 г. Их полёт длился чуть более суток, и за это время собаки успели облететь планету 17 раз. Всё это время за ними наблюдали с экранов мониторов в Центре управления полётами - кстати, именно по причине контрастности были выбраны белые собаки - ведь изображение тогда было чёрно-белым. По итогам запуска также был доработан и окончательно утверждён сам космический корабль - всего через 8 месяцев в аналогичном аппарате в космос отправится первый человек.

Помимо собак и до, и после 1961 г в космосе побывали обезьяны (макаки, беличьи обезьяны и шимпанзе), кошки, черепахи, а также всякая мелочь – мухи, жуки и т. д.

В этот же период СССР запустил первый искусственный спутник Солнца, станция «Луна-2» сумела мягко прилуниться на поверхность планеты, а также были получены первые фотографии невидимой с Земли стороны Луны.

День 12 апреля 1961 г. разделил историю освоения космических далей на два периода - «когда человек мечтал о звёздах» и «с тех пор, как человек покорил космос».

Человек в космосе

День 12 апреля 1961 г. разделил историю освоения космических далей на два периода - «когда человек мечтал о звёздах» и «с тех пор, как человек покорил космос». В 9:07 по московскому времени со стартовой площадки № 1 космодрома Байконур был запущен космический корабль «Восток-1» с первым в мире космонавтом на борту - Юрием Гагариным. Совершив один виток вокруг Земли и проделав путь в 41 тыс. км, спустя 90 минут после старта, Гагарин приземлился под Саратовом, став на долгие годы самым знаменитым, почитаемым и любимым человеком планеты. Его «поехали!» и «всё видно очень ясно - космос чёрный - земля голубая» вошли в список наиболее известных фраз человечества, его открытая улыбка, непринуждённость и радушие растопили сердца людей по всему миру. Первый полёт человека в космос управлялся с Земли, сам Гагарин являлся скорее пассажиром, хотя и великолепно подготовленным. Нужно отметить, что условия полёта были далеки от тех, что предлагаются ныне космическим туристам: Гагарин испытывал восьми-десятикратные перегрузки, был период, когда корабль буквально кувыркался, а за иллюминаторами горела обшивка и плавился металл. В течение полёта произошло несколько сбоев в различных системах корабля, но к счастью, космонавт не пострадал.

Вслед за полётом Гагарина знаменательные вехи в истории освоения космоса посыпались одна за другой: был совершён первый в мире групповой космический полёт, затем в космос отправилась первая женщина-космонавт Валентина Терешкова (1963 г), состоялся полёт первого многоместного космического корабля, Алексей Леонов стал первым человеком, совершившим выход в открытый космос (1965 г) - и все эти грандиозные события - целиком заслуга отечественной космонавтики. Наконец, 21 июля 1969 г состоялась первая высадка человека на Луну: американец Нил Армстронг сделал тот самый «маленький-большой шаг».

Лучший вид в Солнечной системе

Космонавтика - сегодня, завтра и всегда

Сегодня путешествия в космос воспринимаются как нечто само собой разумеющееся. Над нами летают сотни спутников и тысячи прочих нужных и бесполезных объектов, за секунды до восхода солнца из окна спальни можно увидеть вспыхнувшие в ещё невидимых с земли лучах плоскости солнечных батарей Международной космической станции, космические туристы с завидной регулярностью отправляются «бороздить просторы» (тем самым воплощая в реальность ерническую фразу «если очень захотеть, можно в космос полететь») и вот-вот начнётся эра коммерческих суборбитальных полётов с чуть ли не двумя отправлениями ежедневно. Освоение космоса управляемыми аппаратами и вовсе поражает всякое воображение: тут и снимки давно взорвавшихся звёзд, и HD-изображения дальних галактик, и веские доказательства возможности существования жизни на других планетах. Корпорации-миллиардеры уже согласовывают планы по строительству на орбите Земли космических отелей, да и проекты колонизации соседних нам планет давно не кажутся отрывком из романов Азимова или Кларка. Очевидно одно: однажды преодолев земное тяготение, человечество будет вновь и вновь стремиться ввысь, к бесконечным мирам звёзд, галактик и вселенных. Хочется пожелать только, чтобы нас никогда не покидала красота ночного неба и мириадов мерцающих звёзд, по-прежнему манящих, таинственных и прекрасных, как в первые дни творения.

Космос раскрывает свои тайны

Академик Благонравов остановился на некоторых новых достижениях советской науки: в области физики космоса.

Начиная со 2 января 1959 года, при каждом полете советских космических ракет проводилось исследование излучений на больших расстояниях от Земли. Детальному изучению подвергся открытый советскими учеными так называемый внешний радиационный пояс Земли. Изучение состава частиц радиационных поясов с помощью различных сцинтилляционных и газоразрядных счетчиков, находившихся на спутниках и космических ракетах, позволило установить, что во внешнем поясе присутствуют электроны значительных энергий до миллиона электронвольт и даже выше. При торможении в оболочках космических кораблей они создают интенсивное пронизывающее рентгеновское излучение. При полете автоматической межпланетной станции в сторону Венеры была определена средняя энергия этого рентгеновского излучения на расстояниях от 30 до 40 тысяч километров от центра Земли, составляющая около 130 килоэлектронвольт. Эта величина мало изменялась с изменением расстояния, что позволяет судить о постоянном энергетическом спектре электронов в этой области.

Уже первые исследования показали нестабильность внешнего пояса радиации, перемещения максимума интенсивности, связанные с магнитными бурями, вызываемыми солнечными корпускулярными потоками. Последние измерения с автоматической межпланетной станции, запущенной в сторону Венеры, показали, что хотя ближе к Земле происходят изменения интенсивности, но наружная граница внешнего пояса при спокойном состоянии магнитного поля практически на протяжении двух лет оставалась постоянной как по интенсивности, так и по пространственному расположению. Исследования последних лет позволили также построить модель ионизованной газовой оболочки Земли на основе экспериментальных данных для периода, близкого к максимуму солнечной деятельности. Наши исследования показали, что на высотах меньше тысячи километров основную роль играют ионы атомарного кислорода, а начиная с высот, лежащих между одной и двумя тысячами километров, в ионосфере превалируют ионы водорода. Протяженность самой внешней области ионизованной газовой оболочки Земли, так называемой водородной «короны», весьма велика.

Обработка результатов измерений, проведенных на первых советских космических ракетах, показала, что на высотах примерно от 50 до 75 тысяч километров за пределами внешнего радиационного пояса обнаружены потоки электронов с энергиями, превышающими 200 электронвольт. Это позволило предположить существование третьего самого внешнего пояса заряженных частиц с большой интенсивностью потоков, но меньшей энергией. После пуска в марте 1960 года американской космической ракеты «Пионер V» были получены данные, которые подтвердили наши предположения о существовании третьего пояса заряженных частиц. Этот пояс, по-видимому, образуется в результате проникновения солнечных корпускулярных потоков в периферийные области магнитного поля Земли.

Были получены новые данные в отношении пространственного расположения радиационных поясов Земли, обнаружена область повышенной радиации в южной части Атлантического океана, что связано с соответствующей магнитной земной аномалией. В этом районе нижняя граница внутреннего радиационного пояса Земли опускается до 250 – 300 километров от поверхности Земли.

Полеты второго и третьего кораблей-спутников дали новые сведения, которые позволили составить карту распределения радиации по интенсивности ионов над поверхностью земного шара. (Докладчик демонстрирует эту карту перед слушателями).

Впервые токи, создаваемые положительными ионами, входящими в состав солнечного корпускулярного излучения, были зарегистрированы вне магнитного поля Земли на расстояниях порядка сотен тысяч километров от Земли, при помощи трехэлектродных ловушек заряженных частиц, установленных на советских космических ракетах. В частности, на автоматической межпланетной станции, запущенной по направлению к Венере, были установлены ловушки, ориентированные на Солнце, одна из которых предназначалась для регистрации солнечного корпускулярного излучения. 17 февраля, во время сеанса связи с автоматической межпланетной станцией, было зарегистрировано прохождение ее через значительный поток корпускул (с плотностью порядка 10 9 частиц на квадратный сантиметр в секунду). Это наблюдение совпало с наблюдением магнитной бури. Такие опыты открывают пути к установлению количественных соотношений между геомагнитными возмущениями и интенсивностью солнечных корпускулярных потоков. На втором и третьем кораблях-спутниках была изучена в количественном выражении радиационная опасность, вызываемая космическими излучениями за пределами земной атмосферы. Эти же спутники были использованы для исследования химического состава первичного космического излучения. Новая аппаратура, установленная на кораблях-спутниках, включала фотоэмульсионный прибор, предназначенный для экспонирования и проявления непосредственно на борту корабля стопки толстослойных эмульсий. Полученные результаты имеют большую научную ценность для выяснения биологического влияния космических излучений.

Технические проблемы полета

Далее докладчик остановился на ряде существенных проблем, обеспечивших организацию полета человека в космос. Прежде всего надо было решить вопрос о методах выведения на орбиту тяжелого корабля, для чего нужно было иметь мощную ракетную технику. Такая техника у нас создана. Однако недостаточно было сообщить кораблю скорость, превышающую первую космическую. Необходима была еще и высокая точность выведения корабля на заранее рассчитанную орбиту.

Следует иметь в виду, что требования к точности движения по орбите в дальнейшем будут повышаться. Это потребует проведения коррекции движения с помощью специальных двигательных установок. К проблеме коррекции траекторий примыкает проблема маневра направленного изменения траектории полета космического аппарата. Маневры могут осуществляться с помощью импульсов, сообщаемых реактивным двигателем на отдельных специально выбранных участках траекторий, либо с помощью тяги, действующей длительное время, для создания которой применены двигатели электрореактивного типа (ионные, плазменные).

В качестве примеров маневра можно указать переход на более высоко лежащую орбиту, переход на орбиту, входящую в плотные слои атмосферы для торможения и посадки в заданном районе. Маневр последнего типа применялся при посадке советских кораблей-спутников с собаками на борту и при посадке корабля-спутника «Восток».

Для осуществления маневра, выполнения ряда измерений и для других целей необходимо обеспечить стабилизацию корабля-спутника и его ориентацию в пространстве, сохраняемую в течение определенного промежутка времени или изменяемую по заданной программе.

Переходя к проблеме возвращения на Землю, докладчик остановился на следующих вопросах: торможение скорости, защита от нагрева при движении в плотных слоях атмосферы, обеспечение приземления в заданном районе.

Торможение космического аппарата, необходимое для гашения космической скорости, может быть осуществлено либо с помощью специальной мощной двигательной установки, либо посредством торможения аппарата в атмосфере. Первый из этих способов требует весьма больших запасов веса. Использование сопротивления атмосферы для торможения позволяет обойтись сравнительно небольшими дополнительными весами.

Комплекс проблем, связанных с разработкой защитных покрытий при торможении аппарата в атмосфере и организацией процесса входа с приемлемыми для организма человека перегрузками, представляет собой сложную научно-техническую задачу.

Бурное развитие космической медицины поставило на повестку дня вопрос о биологической телеметрии как об основном средстве врачебного контроля и научного медицинского исследования во время космического полета. Использование радиотелеметрии накладывает специфический отпечаток на методику и технику медико-биологических исследований, поскольку к аппаратуре, размещаемой на борту космических кораблей, предъявляется ряд специальных требований. Эта аппаратура должна иметь очень небольшой вес, малые габариты. Она должна быть рассчитана на минимальное энергопотребление. Кроме того, бортовая аппаратура должна устойчиво работать на активном участке и при спуске, когда действуют вибрации и перегрузки.

Датчики, предназначенные для преобразования физиологических параметров в электрические сигналы, должны быть миниатюрными, рассчитанными на длительную работу. Они не должны создавать неудобств космонавту.

Широкое применение радиотелеметрии в космической медицине заставляет исследователей обратить серьезное внимание на конструирование такой аппаратуры, а также на согласование объема необходимой для передачи информации с емкостью радиоканалов. Поскольку новые задачи, стоящие перед космической медициной, приведут к дальнейшему углублению исследований, к необходимости значительного увеличения количества регистрируемых параметров, потребуется внедрение систем, запоминающих информации, и методов кодирования.

В заключение докладчик остановился на вопросе о том, почему для первого космического путешествия был выбран именно вариант облета Земли по орбите. Этот вариант представлял собою решительный шаг к завоеванию космического пространства. Им обеспечивалось исследование вопроса о влиянии длительности полета на человека, решалась задача управляемого полета, задача управления спуском, вхождения в плотные слои атмосферы и благополучного возвращения на Землю. По сравнению с этим полет, осуществленный недавно в США, представляется малоценным. Он мог иметь значение как промежуточный вариант для проверки состояния человека при этапе набора скорости, при перегрузках во время спуска; но после полета Ю. Гагарина в такой проверке уже не было надобности. В этом варианте эксперимента безусловно преобладал элемент сенсации. Единственную ценность этого полета можно видеть в проверке действия разработанных систем, обеспечивающих вхождение в атмосферу и приземление, но, как мы видели, проверка подобных систем, разработанных у нас в Советском Союзе для более сложных условий, была надежно осуществлена еще ранее первого космического полета человека. Таким образом, ни в какое сравнение не могут быть поставлены достижения, полученные у нас 12 апреля 1961 г., с тем, что до настоящего времени оказалось достигнуто в США.

И как бы ни старались, говорит академик, враждебно настроенные по отношению к Советскому Союзу люди за рубежом своими измышлениями умалить успехи нашей науки и техники, весь мир оценивает эти успехи должным образом и видит, насколько вырвалась наша страна вперед по пути технического прогресса. Я лично был свидетелем того восторга и восхищения, которые были вызваны известием об историческом полете нашего первого космонавта среди широких масс итальянского народа.

Полет прошел исключительно успешно

Доклад о биологических проблемах космических полетов сделал академик Н. М. Сисакян. Он охарактеризовал основные этапы развития космической биологии и подвел некоторые итоги научных биологических исследований, связанных с космическими полетами.

Докладчик привел медико-биологические характеристики полета Ю. А. Гагарина. В кабине поддерживалось барометрическое давление в пределах 750 – 770 миллиметров ртутного столба, температура воздуха – 19 – 22 градуса Цельсия, относительная влажность – 62 – 71 процент.

В предстартовом периоде, примерно за 30 минут до старта космического корабля, частота сердечных сокращений составила 66 в минуту, частота дыхания – 24. За три минуты до старта некоторое эмоциональное напряжение проявилось в увеличении частоты пульса до 109 ударов в минуту, дыхание продолжало оставаться ровным и спокойным.

В момент старта корабля и постепенного набора скорости частота сердцебиения возросла до 140 – 158 в минуту, частота дыхания составляла 20 – 26. Изменения физиологических показателей на активном участке полета, по данным телеметрической записи электрокардиограмм и пнеймограмм, были в допустимых пределах. К концу активного участка частота сердечных сокращений составила уже 109, а дыхания – 18 в минуту. Иными словами, эти показатели достигли значений, характерных для ближайшего к старту момента.

При переходе к невесомости и полете в этом состоянии показатели сердечно-сосудистой и дыхательной систем последовательно приближались к исходным значениям. Так, уже на десятой минуте невесомости частота пульса достигла 97 ударов в минуту, дыхания – 22. Работоспособность не нарушилась, движения сохранили координацию и необходимую точность.

На участке спуска, при торможении аппарата, когда вновь возникали перегрузки, были отмечены кратковременные, быстро преходящие периоды учащения дыхания. Однако уже при подходе к Земле дыхание стало ровным, спокойным, с частотой около 16 в минуту.

Через три часа после приземления частота сердечных сокращений составляла 68, дыхание – 20 в минуту, т. е. величины, характерные для спокойного, нормального состояния Ю. А. Гагарина.

Все это свидетельствует о том, что полет прошел исключительно успешно, самочувствие и общее состояние космонавта на всех участках полета было удовлетворительным. Системы жизнеобеспечения работали нормально.

В заключение докладчик остановился на важнейших очередных проблемах космической биологии.

Отечественных космонавтов стоит готовить не для работы на МКС, а для экспедиций на Луну и Марс. Так считает заместитель начальника Центра подготовки космонавтики (ЦПК) по научной работе Борис Крючков. По его словам, существующая сегодня в России система отбора и подготовки космонавтов не в состоянии обеспечить должного уровня развития пилотируемой космонавтики. Главными задачами развития российской пилотируемой космонавтики до 2020 года являются эксперименты и исследования, проводимые на отечественном сегменте МКС, а также разработка новой системы транспортно-технического обеспечения на основе космического пилотируемого корабля нового поколения.

В то же время наша страна должна эффективно осваивать околоземное пространство и заниматься реализацией программы по освоению естественного спутника Земли и отрабатывать основные технологии для подготовки пилотируемого полета к Марсу и другим планетам нашей Солнечной системы. Очевидно, что развитие российской пилотируемой космонавтики в данном направлении не может являться полноценным без изменения существующей в РФ системы подготовки и отбора космонавтов, так как она предъявляет новые требования к задачам, используемым техническим средствам и условиям проведения подготовки и отбора.

Развитие пилотируемой космонавтики должно вестись именно в ключе стоящих перед нами перспективных задач. Одним из основных элементов развития и модернизации ЦПК должно стать создание современного научно-технического комплекса подготовки космонавтов, а также создание необходимой инфраструктуры, организация и проведение опытно-конструкторских и научно-исследовательских работ для развития пилотируемых полетов. Также очень большое значение будет иметь и подготовка квалифицированного персонала самого ЦПК, полагает Борис Крючков.

Перспективы развития российской космонавтики стали предметом встречи российского вице-премьера Дмитрия Рогозина, курирующего вопросы развития ОПК, и руководства Роскосмоса, состоявшейся 23 сентября 2014 года. После того, как в нашей стране решили возобновить программу, направленную на освоение Луны, российские власти определились с началом ее активной фазы. По словам Олега Остапенко, занимающего пост главы Роскосмоса, полномасштабное освоение Луны Россией начнется в конце 20-х начале 30-х годов. В целом же на изучение космоса правительство готово предоставить 321 миллиард рублей до 2025 года, сообщил вице-премьер Дмитрий Рогозин.

В оформленном виде, по словам Остапенко, новый проект российской Федеральной космической программы на 2016-2025 годы будет в ближайшее время согласован с правительством. По его словам, программа практически полностью закончила процесс согласования. Об этом он рассказал журналистам на совещании в Центре подготовки космонавтов. Новая российская программа предусматривает, в частности, разработку ракеты-носителя сверхтяжелого класса, активное освоение естественного спутника Земли, создание робота-космонавта, который будет оказывать помощь экипажу МКС во время совершения выходов в открытый космос.

По информации РИА « », часть из названной суммы будет направлена на разработку новых модулей для МКС, а также на развитие нового российского автоматического космического аппарата под названием «ОКА-Т». «ОКА-Т» - это автономный технологический модуль, планируемая многоцелевая космическая лаборатория, которая войдет в состав российского сегмента МКС. При этом модуль сможет работать в космосе отдельно от станции. Время от времени он будет осуществлять стыковку с МКС, экипаж которой возьмет на себя функции по заправке, обслуживанию находящейся на борту научной аппаратуры и другим операциям.

По словам заместителя председателя правительства, аппарат «ОКА-Т» предназначен для решения научных задач в условиях голубого вакуума. На данный момент времени все космические эксперименты на борту МКС осуществляются в соответствии с долгосрочной российской программой научно-прикладных исследований. Среди данных экспериментов - исследования химических и физических процессов, а также материалов в условиях их нахождения в космосе. Также, как отметил Рогозин, реализуются и запланированы исследования нашей планеты из космоса, биотехнологии, космическая биология, технологии освоения космоса. Много всего запланировано и реализуется, отметил Рогозин, подчеркнув, что сегодня государство выделяет на космические исследования значительные средства.

Также на совещании по развитию российской космонавтики Рогозин поставил вопрос о целесообразности развития пилотируемой космонавтики в аспекте Международной космической станции. Российский вице-премьер обратил внимание на текущую геополитическую ситуацию, отметив, что РФ должна быть максимально прагматичной в текущих реалиях. Ранее Дмитрий Рогозин уже говорил о том, что после 2020 года Россия может сосредоточить свои усилия на более перспективных космических проектах, чем МКС, обратив свое внимание на создание сугубо национальных проектов.

Возможное прекращение международного сотрудничества в рамках проекта МКС может произойти между 2020 и 2028 годами. Отечественная космическая промышленность готовится к такому развитию ситуации. РКК «Энергия» ранее уже выступала с предложением по разработке самостоятельного российского проекта орбитальной базы, расположенной на низкой околоземной орбите с применением трех российских модулей из состава МКС - двух научно-энергетических и одного узлового. Такая база может понадобиться в рамках создания на орбите космического порта. Без наличия такого порта трудно думать об освоении Солнечной системы и имеющихся в ней ресурсов. В перспективе на такой базе может быть налажен процесс сборки и обслуживания различных межпланетных космических комплексов. Кто-то скажет, что это дела далекого будущего, но специалисты РКК «Энергия» просто обязаны смотреть на десятилетия вперед, для того чтобы точнее определять вектор развития российской космонавтики.

В этом плане важное значение приобретает корабль-модуль «ОКА-Т», который должен появиться в составе инфраструктуры МКС в недалеком будущем. Этот свободно летающий на некотором удалении от станции технологический корабль планируется отправить в космос в 2018 году. «ОКА-Т» станет прообразом первого промышленного цеха, размещенного на орбите Земли. На борту корабля планируется осуществлять разнообразные научные исследования и получать новые материалы (в том числе и лекарственные средства), обладающие такими свойствами, добиться которых на Земле невозможно. На самой МКС наладить такое производство не представляется возможным по причине постоянных вибраций и наличия микрогравитации. В то же время на свободно летающем беспилотном корабле-модуле «ОКА-Т» условия для этого будут идеальными. Раз в 6 месяцев такой корабль будет осуществлять стыковку с МКС для проведения технического обслуживания и погрузки/выгрузки сырья и готовой продукции.

Источники информации:
http://vpk-news.ru/articles/22268
http://www.newsru.com/russia/23sep2014/luna.html
http://www.politforums.net/culture/1366236010.html
http://mir24.tv/news/Science/11284833



просмотров