Определение марковского процесса. Марковские процессы: примеры. Марковский случайный процесс

Определение марковского процесса. Марковские процессы: примеры. Марковский случайный процесс

Случайным процессом называется множество или семейство случайных величин, значения которых индексируются временным параметром. Например, число студентов в аудитории, атмосферное давление или температура в этой аудитории как функции времени являются случайными процессами.

Случайные процессы находят широкое применение при изучении сложных стохастических систем как адекватные математические модели процесса функционирования таких систем.

Основными понятиями для случайных процессов являются понятия состояния процесса иперехода его из одного состояния в другое.

Значения переменных, которые описывают случайный процесс, в данный момент времени называются состоянием случайного процесса . Случайный процесс совершает переход из одного состояния в другое, если значения переменных, задающих одно состояние, изменяются на значения, которые определяют другое состояние.

Число возможных состояний (пространство состояний) случайного процесса может быть конечным или бесконечным. Если число возможных состояний конечно или счетно (всем возможным состояниям могут быть присвоены порядковые номера), то случайный процесс называется процессом с дискретными состояниями . Например, число покупателей в магазине, число клиентов в банке в течение дня описываются случайными процессами с дискретными состояниями.

Если переменные, описывающие случайный процесс, могут принимать любые значения из конечного или бесконечного непрерывного интервала, а, значит, число состояний несчетно, то случайный процесс называется процессом с непрерывными состояниями . Например, температура воздуха в течение суток является случайным процессом с непрерывными состояниями.

Для случайных процессов с дискретными состояниями характерны скачкообразные переходы из одного состояния в другое, тогда, как в процессах с непрерывными состояниями переходы являются плавными. Далее будем рассматривать только процессы с дискретными состояниями, которых часто называют цепями .

Обозначим через g (t ) случайный процесс с дискретными состояниями, а возможные значенияg (t ), т.е. возможные состояния цепи, - через символыE 0 , E 1 , E 2 , … . Иногда для обозначения дискретных состояний используют числа 0, 1, 2,... из натурального ряда.

Случайный процесс g (t ) называетсяпроцессом с дискретным временем , если переходы процесса из состояния в состояние возможны только в строго определенные, заранее фиксированные моменты времениt 0 , t 1 , t 2 , … . Если переход процесса из состояния в состояние возможен в любой, заранее неизвестный момент времени, то случайный процесс называетсяпроцессом с непрерывным временем . В первом случае, очевидно, что интервалы времени между переходами являются детерминированными, а во втором - случайными величинами.

Процесс с дискретным временем имеет место либо, когда структура системы, которая описывается этим процессом, такова, что ее состояния могут изменяться только в заранее определенные моменты времени, либо когда предполагается, что для описания процесса (системы) достаточно знать состояния в определенные моменты времени. Тогда эти моменты можно пронумеровать и говорить о состоянии E i в момент времени t i .

Случайные процессы с дискретными состояниями могут изображаться в виде графа переходов (или состояний), в котором вершины соответствуют состояниям, а ориентированные дуги - переходам из одного состояния в другое. Если из состояния E i возможен переход только в одно состояниеE j , то этот факт на графе переходов отражается дугой, направленной из вершиныE i в вершинуE j (рис.1,а). Переходы из одного состояния в несколько других состояний и из нескольких состояний в одно состояние отражается на графе переходов, как показано на рис.1,б и 1,в.

Очень удобно описывать появление случайных событий в виде вероятностей переходов из одного состояния системы в другое, так как при этом считается, что, перейдя в одно из состояний, система не должна далее учитывать обстоятельства того, как она попала в это состояние.

Случайный процесс называется марковским процессом (или процессом без последействия ), если для каждого момента времени t вероятность любого состояния системы в будущем зависит только от ее состояния в настоящем и не зависит от того, как система пришла в это состояние.

Итак, марковский процесс удобно задавать графом переходов из состояния в состояние. Мы рассмотрим два варианта описания марковских процессов — с дискретным и непрерывным временем .

В первом случае переход из одного состояния в другое происходит в заранее известные моменты времени — такты (1, 2, 3, 4, …). Переход осуществляется на каждом такте, то есть исследователя интересует только последовательность состояний, которую проходит случайный процесс в своем развитии, и не интересует, когда конкретно происходил каждый из переходов.

Во втором случае исследователя интересует и цепочка меняющих друг друга состояний, и моменты времени, в которые происходили такие переходы.

И еще. Если вероятность перехода не зависит от времени, то марковскую цепь называют однородной .

Марковский процесс с дискретным временем

Итак, модель марковского процесса представим в виде графа, в котором состояния (вершины) связаны между собой связями (переходами из i -го состояния в j -е состояние), см. рис. 33.1 .

Рис. 33.1. Пример графа переходов

Каждый переход характеризуется вероятностью перехода P ij . Вероятность P ij показывает, как часто после попадания в i -е состояние осуществляется затем переход в j -е состояние. Конечно, такие переходы происходят случайно, но если измерить частоту переходов за достаточно большое время, то окажется, что эта частота будет совпадать с заданной вероятностью перехода.

Ясно, что у каждого состояния сумма вероятностей всех переходов (исходящих стрелок) из него в другие состояния должна быть всегда равна 1 (см. рис. 33.2 ).

Рис. 33.2. Фрагмент графа переходов
(переходы из i-го состояния являются
полной группой случайных событий)

Например, полностью граф может выглядеть так, как показано на рис. 33.3 .

Рис. 33.3. Пример марковского графа переходов

Реализация марковского процесса (процесс его моделирования) представляет собой вычисление последовательности (цепи) переходов из состояния в состояние (см. рис. 33.4 ). Цепь на рис. 33.4 является случайной последовательностью и может иметь также и другие варианты реализации.

Рис. 33.4. Пример марковской цепи, смоделированной
по марковскому графу, изображенному на рис. 33.3

Чтобы определить, в какое новое состояние перейдет процесс из текущего i -го состояния, достаточно разбить интервал на подынтервалы величиной P i 1 , P i 2 , P i 3 , … (P i 1 + P i 2 + P i 3 + … = 1 ), см. рис. 33.5 . Далее с помощью ГСЧ надо получить очередное равномерно распределенное в интервале случайное число r рр и определить, в какой из интервалов оно попадает (см. лекцию 23).

Рис. 33.5. Процесс моделирования перехода из i-го
состояния марковской цепи в j-е с использованием
генератора случайных чисел

После этого осуществляется переход в состояние, определенное ГСЧ, и повтор описанной процедуры для нового состояния. Результатом работы модели является марковская цепь (см. рис. 33.4 ) .

Пример. Имитация стрельбы из пушки по цели . Для того, чтобы проимитировать стрельбу из пушки по цели, построим модель марковского случайного процесса.

Определим следующие три состояния: S 0 — цель не повреждена; S 1 — цель повреждена; S 2 — цель разрушена. Зададим вектор начальных вероятностей:

S 0 S 1 S 2
P 0 0.8 0.2 0

Значение P 0 для каждого из состояний показывает, какова вероятность каждого из состояний объекта до начала стрельбы.

Зададим матрицу перехода состояний (см. табл. 33.1).

Таблица 33.1.
Матрица вероятностей перехода
дискретного марковского процесса
В S 0 В S 1 В S 2 Сумма вероятностей
переходов
Из S 0 0.45 0.40 0.15 0.45 + 0.40 + 0.15 = 1
Из S 1 0 0.45 0.55 0 + 0.45 + 0.55 = 1
Из S 2 0 0 1 0 + 0 + 1 = 1

Матрица задает вероятность перехода из каждого состояния в каждое. Заметим, что вероятности заданы так, что сумма вероятностей перехода из некоторого состояния в остальные всегда равна единице (куда-то система должна перейти обязательно).

Наглядно модель марковского процесса можно представить себе в виде следующего графа (см. рис. 33.6 ).

Рис. 33.6. Граф марковского процесса,
моделирующий стрельбу из пушки по цели

Используя модель и метод статистического моделирования, попытаемся решить следующую задачу: определить среднее количество снарядов, необходимое для полного разрушения цели.

Проимитируем, используя таблицу случайных чисел, процесс стрельбы. Пусть начальное состояние будет S 0 . Возьмем последовательность из таблицы случайных чисел: 0.31, 0.53, 0.23, 0.42, 0.63, 0.21, … (случайные числа можно взять, например, из этой таблицы).

0.31 : цель находится в состоянии S 0 и остается в состоянии S 0 , так как 0 < 0.31 < 0.45;
0.53 : цель находится в состоянии S 0 и переходит в состояние S 1 , так как 0.45 < 0.53 < 0.45 + 0.40;
0.23 : цель находится в состоянии S 1 и остается в состоянии S 1 , так как 0 < 0.23 < 0.45;
0.42 : цель находится в состоянии S 1 и остается в состоянии S 1 , так как 0 < 0.42 < 0.45;
0.63 : цель находится в состоянии S 1 и переходит в состояние S 2 , так как 0.45 < 0.63 < 0.45 + 0.55.

Так как достигнуто состояние S 2 (далее цель переходит из S 2 в состояние S 2 с вероятностью 1), то цель поражена. Для этого в данном эксперименте потребовалось 5 снарядов.

На рис. 33.7 приведена временная диаграмма, которая получается во время описанного процесса моделирования. Диаграмма показывает, как во времени происходит процесс изменения состояний. Такт моделирования для данного случая имеет фиксированную величину. Нам важен сам факт перехода (в какое состояние переходит система) и не важно, когда это происходит.


Рис. 33.7. Временная диаграмма переходов
в марковском графе (пример имитации)

Процедура уничтожения цели совершена за 5 тактов, то есть марковская цепь этой реализации выглядит следующим образом: S 0 —S 0 —S 1 —S 1 —S 1 —S 2 . Конечно, ответом задачи это число быть не может, так как в разных реализациях получатся разные ответы. А ответ у задачи может быть только один.

Повторяя данную имитацию, можно получить, например, еще такие реализации (это зависит от того, какие конкретно случайные числа выпадут): 4 (S 0 —S 0 —S 1 —S 1 —S 2 ); 11 (S 0 —S 0 —S 0 —S 0 —S 0 —S 1 —S 1 —S 1 —S 1 —S 1 —S 1 —S 2 ); 5 (S 1 —S 1 —S 1 —S 1 —S 1 —S 2 ); 6 (S 0 —S 0 —S 1 —S 1 —S 1 —S 1 —S 2 ); 4 (S 1 —S 1 —S 1 —S 1 —S 2 ); 6 (S 0 —S 0 —S 1 —S 1 —S 1 —S 1 —S 2 ); 5 (S 0 —S 0 —S 1 —S 1 —S 1 —S 2 ). Всего уничтожено 8 целей. Среднее число циклов в процедуре стрельбы составило: (5 + 4 + 11 + 5 + 6 + 4 + 6 + 5)/8 = 5.75 или, округляя, 6. Именно столько снарядов, в среднем, рекомендуется иметь в боевом запасе пушки для уничтожения цели при таких вероятностях попаданий.

Теперь следует определить точность. Именно точность может нам показать, насколько следует доверять данному ответу. Для этого проследим, как сходится последовательность случайных (приближенных) ответов к правильному (точному) результату. Напомним, что, согласно центральной предельной теореме (см. лекцию 25 , лекцию 21), сумма случайных величин есть величина неслучайная, поэтому для получения статистически достоверного ответа необходимо следить за средним числом снарядов, получаемых в ряде случайных реализаций.

На первом этапе вычислений средний ответ составил 5 снарядов, на втором этапе средний ответ составил (5 + 4)/2 = 4.5 снаряда, на третьем — (5 + 4 + 11)/3 = 6.7. Далее ряд средних величин, по мере накопления статистики, выглядит следующим образом: 6.3, 6.2, 5.8, 5.9, 5.8. Если изобразить этот ряд в виде графика средней величины выпущенных снарядов, необходимых для поражения цели, в зависимости от номера эксперимента, то обнаружится, что данный ряд сходится к некоторой величине, которая и является ответом (см. рис. 33.8 ).

Рис. 33.8. Изменение средней величины в зависимости от номера эксперимента

Визуально мы можем наблюдать, что график «успокаивается», разброс между вычисляемой текущей величиной и ее теоретическим значением со временем уменьшается, стремясь к статистически точному результату. То есть в некоторый момент график входит в некоторую «трубку», размер которой и определяет точность ответа.

Алгоритм имитации будет иметь следующий вид (см. рис. 33.9).

Еще раз заметим, что в вышерассмотренном случае нам безразлично, в какие моменты времени будет происходить переход. Переходы идут такт за тактом. Если важно указать, в какой именно момент времени произойдет переход, сколько времени система пробудет в каждом из состояний, требуется применить модель с непрерывным временем.

Марковские случайные процессы с непрерывным временем

Итак, снова модель марковского процесса представим в виде графа, в котором состояния (вершины) связаны между собой связями (переходами из i -го состояния в j -е состояние), см. рис. 33.10 .

Рис. 33.10. Пример графа марковского
процесса с непрерывным временем

Теперь каждый переход характеризуется плотностью вероятности перехода λ ij . По определению:

При этом плотность понимают как распределение вероятности во времени.

Переход из i -го состояния в j -е происходит в случайные моменты времени, которые определяются интенсивностью перехода λ ij .

К интенсивности переходов (здесь это понятие совпадает по смыслу с распределением плотности вероятности по времени t ) переходят, когда процесс непрерывный, то есть, распределен во времени.

С интенсивностью потока (а переходы — это поток событий) мы уже научились работать в лекции 28 . Зная интенсивность λ ij появления событий, порождаемых потоком, можно сымитировать случайный интервал между двумя событиями в этом потоке.

где τ ij — интервал времени между нахождением системы в i -ом и j -ом состоянии.

Далее, очевидно, система из любого i -го состояния может перейти в одно из нескольких состояний j , j + 1 , j + 2 , …, связанных с ним переходами λ ij , λ ij + 1 , λ ij + 2 , ….

В j -е состояние она перейдет через τ ij ; в (j + 1 )-е состояние она перейдет через τ ij + 1 ; в (j + 2 )-е состояние она перейдет через τ ij + 2 и т. д.

Ясно, что система может перейти из i -го состояния только в одно из этих состояний, причем в то, переход в которое наступит раньше.

Поэтому из последовательности времен: τ ij , τ ij + 1 , τ ij + 2 и т. д. надо выбрать минимальное и определить индекс j , указывающий, в какое именно состояние произойдет переход.

Пример. Моделирование работы станка . Промоделируем работу станка (см. рис. 33.10 ), который может находиться в следующих состояниях: S 0 — станок исправен, свободен (простой); S 1 — станок исправен, занят (обработка); S 2 — станок исправен, замена инструмента (переналадка) λ 02 < λ 21 ; S 3 — станок неисправен, идет ремонт λ 13 < λ 30 .

Зададим значения параметров λ , используя экспериментальные данные, получаемые в производственных условиях: λ 01 — поток на обработку (без переналадки); λ 10 — поток обслуживания; λ 13 — поток отказов оборудования; λ 30 — поток восстановлений.

Реализация будет иметь следующий вид (см. рис. 33.11 ).

Рис. 33.11. Пример моделирования непрерывного
марковского процесса с визуализацией на временной
диаграмме (желтым цветом указаны запрещенные,
синим — реализовавшиеся состояния)

В частности, из рис. 33.11 видно, что реализовавшаяся цепь выглядит так: S 0 —S 1 —S 0 —… Переходы произошли в следующие моменты времени: T 0 —T 1 —T 2 —T 3 —… , где T 0 = 0 , T 1 = τ 01 , T 2 = τ 01 + τ 10 .

Задача . Поскольку модель строят для того, чтобы на ней можно было решить задачу, ответ которой до этого был для нас совсем не очевиден (см. лекцию 01), то сформулируем такую задачу к данному примеру. Определить долю времени в течение суток, которую занимает простой станка (посчитать по рисунку) T ср = (T + T + T + T )/N .

Алгоритм имитации будет иметь следующий вид (см. рис. 33.12 ).

Рис. 33.12. Блок-схема алгоритма моделирования непрерывного
марковского процесса на примере имитации работы станка

Очень часто аппарат марковских процессов используется при моделировании компьютерных игр, действий компьютерных героев.

Лекция 9

Марковские процессы
Лекция 9
Марковские процессы



1

Марковские процессы

Марковские процессы
Случайный процесс, протекающий в системе, называется
марковским, если он обладает отсутствием последствия. Т.е.
если рассматривать текущее состояние процесса (t 0) - как
настоящее, совокупность возможных состояний { (s),s t} - как
прошлое, совокупность возможных состояний { (u),u t} - как
будущее, то для марковского процесса при фиксированном
настоящем будущее не зависит от прошлого, а определяется
лишь настоящим и не зависит от того, когда и как система
пришла в это состояние.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
2

Марковские процессы

Марковские процессы
Марковские случайные процессы названы по имени выдающегося русского математика А.А.Маркова, впервые начавшего изучение вероятностной связи случайных величин
и создавшего теорию, которую можно назвать "динамикой
вероятностей". В дальнейшем основы этой теории явились
исходной базой общей теории случайных процессов, а также таких важных прикладных наук, как теория диффузионных процессов, теория надежности, теория массового обслуживания и т.д.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
3

Марков Андрей Андреевич Марков Андрей Андреевич Марков Андрей Андреевич

Марковские процессы
Марков Андрей Андреевич
1856-1922
Русский математик.
Написал около 70 работ по
теории
чисел,
теории
приближения функций, теории
вероятностей. Существенно расширил сферу применения закона
больших чисел и центральной
предельной теоремы. Является
основоположником теории случайных процессов.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
4

Марковские процессы

Марковские процессы
На практике марковские процессы в чистом виде обычно
не встречаются. Но имеются процессы, для которых влиянием «предыстории» можно пренебречь, и при изучении
таких процессов можно применять марковские модели. В
настоящее время теория марковских процессов и ее приложения широко применяются в самых различных областях.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
5

Марковские процессы

Марковские процессы
Биология: процессы рождения и гибели - популяции, мутации,
эпидемии.
Физика:
радиоактивные
распады,
теория
счетчиков
элементарных частиц, процессы диффузии.
Химия:
теория
следов
в
ядерных
фотоэмульсиях,
вероятностные модели химической кинетики.
Images.jpg
Астрономия: теория флуктуационной
яркости млечного пути.
Теория массового обслуживания: телефонные станции,
ремонтные мастерские, билетные кассы, справочные бюро,
станочные и другие технологические системы, системы управления
гибких производственных систем, обработка информации серверами.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
6

Марковские процессы

Марковские процессы
Пусть в настоящий момент t0 система находится в
определенном состоянии S0. Мы знаем характеристики
состояния системы в настоящем и все, что было при t < t0
(предысторию процесса). Можем ли мы предсказать будущее,
т.е. что будет при t > t0?
В точности – нет, но какие-то вероятностные характеристики
процесса в будущем найти можно. Например, вероятность того,
что через некоторое время
система S окажется в состоянии
S1 или останется в состоянии S0 и т.д.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
7

Марковские процессы. Пример.

Марковские процессы
Марковские процессы. Пример.
Система S – группа самолетов, участвующих в воздушном бою. Пусть x – количество
«красных» самолетов, y – количество «синих» самолетов. К моменту времени t0 количество сохранившихся (не сбитых) самолетов
соответственно – x0, y0.
Нас интересует вероятность того, что в момент времени
t 0 численный перевес будет на стороне «красных». Эта вероятность зависит от того, в каком состоянии находилась система
в момент времени t0, а не от того, когда и в какой последовательности погибали сбитые до момента t0 самолеты.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
8

Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Марковский процесс с конечным или счетным числом
состояний и моментов времени называется дискретной
цепью Маркова. Переходы из состояния в состояние возможны только в целочисленные моменты времени.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
9

10. Дискретные цепи Маркова. Пример

Марковские процессы

Предположим,
что
речь
идет
о
последовательных бросаниях монеты при
игре "в орлянку"; монета бросается в
условные моменты времени t =0, 1, ... и на
каждом шаге игрок может выиграть ±1 с
одинаковой
вероятностью
1/2,
таким
образом в момент t его суммарный выигрыш есть случайная величина ξ(t) с возможными значениями j = 0, ±1, ... .
При условии, что ξ(t) = k, на следующем шаге выигрыш будет
уже равен ξ(t+1) = k ± 1, принимая значения j = k ± 1 c одинаковой вероятностью 1/2. Можно сказать, что здесь с соответствующей вероятностью происходит переход из состояния ξ(t) = k в состояние ξ(t+1) = k ± 1.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
10

11. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Обобщая этот пример, можно представить себе систему со
счетным числом возможных состояний, которая с течением
дискретного времени t = 0, 1, ... случайно переходит из состояния в состояние.
Пусть ξ(t) есть ее положение в момент t в результате цепочки случайных переходов
ξ(0) -> ξ(1) -> ... -> ξ(t) -> ξ(t+1) ->...-> ... .
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
11

12. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой – графом
состояний. Вершины графа – состояния системы. Дуги графа
– возможные переходы из состояния в состояние.
Игра «в орлянку».
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
12

13. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Обозначим все возможные состояния целыми i = 0, ±1, ...
Предположим, что при известном состоянии ξ(t) =i на следующем шаге система переходит в состояние ξ(t+1) = j с условной вероятностью
P{ (t 1) j (t) i}
независимо от ее поведения в прошлом, точнее, независимо
от цепочки переходов до момента t:
P{ (t 1) j (t) i; (t 1) it 1;...; (0) i0 }
P{ (t 1) j (t) i}
Это свойство называется марковским.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
13

14. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Число
pij P{ (t 1) j (t) i}
называется вероятностью
перехода системы из состояния i в состояние j за один шаг в
момент времени t 1.
Если переходная вероятность не зависит от t , то цепь
Маркова называется однородной.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
14

15. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Матрица P , элементами которой являются вероятности
перехода pij , называется переходной матрицей:
p11 ... p1n
P p 21 ... p 2n
p
n1 ... p nn
Она является стохастической, т.е.
pij 1 ;
i
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
p ij 0 .
15

16. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
Матрица переходов для игры «в орлянку»
...
k 2
k 2
0
k 1
1/ 2
k
0
k 1
k
k 1
k 2
0
1/ 2
0
0
1/ 2
0
1/ 2
0
1/ 2
0
0
0
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
...
k 1 k 2
0
0
0
1/ 2
0
1/ 2
...
0
0
1/ 2
0
16

17. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
Садовник в результате химического анализа почвы оценивает
ее состояние одним из трех чисел - хорошее (1), удовлетворительное (2) или плохое (3). В результате наблюдений на протяжении многих лет садовник заметил,
что продуктивность почвы в текущем
году зависит только от ее состояния в
предыдущем году. Поэтому вероятности
перехода почвы из одного состояния в
другое можно представить следующей
цепью Маркова с матрицей P1:
0.20 0.50 0.30
0.00 0.50 0.50
0.00 0.00 1.00
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
17

18. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
Однако в результате агротехнических мероприятий садовник может изменить переходные вероятности в матрице P1.
Тогда матрица P1 заменится
на матрицу P2:
0.30 0.60 0.10
0.10 0.60 0.30
0.05 0.40 0.55
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
18

19. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Рассмотрим, как изменяются состояния процесса с течением времени. Будем рассматривать процесс в последовательные моменты времени, начиная с момента 0. Зададим начальное распределение вероятностей p(0) { p1 (0),..., pm (0)} , где m число состояний процесса, pi (0) - вероятность нахождения
процесса в состоянии i в начальный момент времени. Вероятность pi (n) называется безусловной вероятностью состояния
i в момент времени n 1.
Компоненты вектора p (n) показывают, какие из возможных состояний цепи в момент времени n являются наиболее
вероятными.
m
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
pk (n) 1
k 1
19

20. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Знание последовательности { p (n)} при n 1,... позволяет составить представление о поведении системы во времени.
В системе с 3-мя состояниями
p11 p12 p13
P p21
p
31
p22
p32
p23
p33
p2 (1) p1 (0) p12 p2 (0) p22 p3 (0) p32
p2 (n 1) p1 (n) p12 p2 (n) p22 p3 (n) p32
В общем случае:
p j (1) pk (0) pkj
p j (n 1) pk (n) pkj
k
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
k
p(n 1) p(n) P
20

21. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
Матрица
0.20 0.50 0.30
0.00 0.50 0.50
0.00 0.00 1.00
Шаг
{ p (n)}
n
0
1, 0, 0
n
1
0.2 , 0.5 , 0.3
n
2
0.04 , 0.35 , 0.61
n
3
0.008 , 0.195 , 0.797
n
4
0.0016 , 0.1015 , 0.8969
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
21

22. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
n
Матрица перехода за n шагов P(n) P .
0.20 0.50 0.30
0.00 0.50 0.50
0.00 0.00 1.00
p(2) p(0) P
2
p (2)
P(2) P 2
1, 0, 0
0.0016
0.
0.
0.0016
0.
0.
0.1015
0.0625
0.
0.1015
0.0625
0.
0.8969
0.9375
1.
0.8969
0.9375
1.
0.04 , 0.35 , 0.61
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
22

23. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Как ведут себя марковские цепи при n ?
Для однородной марковской цепи при определенных условиях выполняется следующее свойство: p (n) при n .
Вероятности 0 не зависят от начального распределения
p(0) , а определяются только матрицей P . В этом случае называется стационарным распределением, а сама цепь – эргодической. Свойство эргодичности означает, что по мере увеличения n
вероятность состояний практически перестаёт изменяться, а система переходит в стабильный режим функционирования.
i
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
23

24. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
0.20 0.50 0.30
0.00 0.50 0.50
0.00 0.00 1.00
0 0 1
P() 0 0 1
0 0 1
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
p () (0,0,1)
24

25. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
0.30 0.60 0.10
0.10 0.60 0.30
0.05 0.40 0.55
0.1017 0.5254 0.3729
P() 0.1017 0.5254 0.3729
0.1017 0.5254 0.3729
p () (0.1017,0.5254,0.3729)
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
25

26. Марковские процессы с непрерывным временем

Марковские процессы

Процесс называется процессом с непрерывным временем, если
моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны и могут произойти
в любой момент.
Пример. Технологическая система S состоит из двух устройств,
каждое из которых в случайный момент времени может выйти из
строя, после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время.
Возможны следующие состояния системы:
S0 - оба устройства исправны;
S1 - первое устройство ремонтируется, второе исправно;
S2 - второе устройство ремонтируется, первое исправно;
S3 - оба устройства ремонтируются.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
26

27. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
Переходы системы S из состояния в состояние происходят
практически мгновенно, в случайные моменты выхода из строя
того или иного устройства или
окончания ремонта.
Вероятностью одновременного
выхода из строя обоих устройств
можно пренебречь.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
27

28. Потоки событий

Марковские процессы
Потоки событий
Поток событий – последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени.
– это среднее число событий,
Интенсивность потока событий
приходящееся на единицу времени.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
28

29. Потоки событий

Марковские процессы
Потоки событий
Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени.
В частности, интенсивность
стационарного потока постоянна. Поток событий неизбежно имеет сгущения или разрежения, но они не носят закономерного характера, и среднее число событий, приходящееся на единицу времени, постоянно и от времени не зависит.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
29

30. Потоки событий

Марковские процессы
Потоки событий
Поток событий называется потоком без последствий, если для
любых двух непересекающихся участков времени и число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой. Другими словами, это означает, что события, образующие поток, появляются в те или иные моменты
времени независимо друг от друга и вызваны каждое своими собственными причинами.
Поток событий называется ординарным, если вероятность появления на элементарном участке t двух и более событий пренебрежимо мала по сравнению с вероятностью появления одного
события, т.е. события в нем появляются поодиночке, а не группами по нескольку сразу
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
30

31. Потоки событий

Марковские процессы
Потоки событий
Поток событий называется простейшим (или стационарным пуассоновским), если он обладает сразу тремя свойствами: 1) стационарен, 2) ординарен, 3) не имеет последствий.
Простейший поток имеет наиболее простое математическое описание. Он играет среди потоков такую же особую
роль, как и закон нормального распределения среди других
законов распределения. А именно, при наложении достаточно большого числа независимых, стационарных и ординарных
потоков (сравнимых между собой по интенсивности) получается поток, близкий к простейшему.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
31

32. Потоки событий

Марковские процессы
Потоки событий
Для простейшего потока с интенсивностью
интервал
времени T между соседними событиями имеет показательное
распределение с плотностью
p(x) e x , x 0 .
Для случайной величины T, имеющей показательное распределение, математическое ожидание есть величина, обратная параметру.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
32

33. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
Рассматривая процессы с дискретными состояниями и непрерывным временем, можно считать, что все переходы системы S из состояния в состояние происходят под действием
простейших потоков событий (потоков вызовов, потоков отказов, потоков восстановлений и т.д.).
Если все потоки событий, переводящие систему S из состояния в состояние простейшие, то процесс, протекающий в
системе, будет марковским.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
33

34. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
Пусть на систему, находящуюся в состоянии, действует
простейший поток событий. Как только появится первое событие этого потока, происходит «перескок» системы из состояния
в состояние.
- интенсивность потока событий, переводящий систему
из состояния
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
в
.
34

35. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
Пусть рассматриваемая система S имеет
возможных состояний
. Вероятность p ij (t) является вероятностью перехода из состояния i в состояние j за время t.
Вероятность i - го состояния
- это вероятность того,
что в момент времени t система будет находиться в состоянии
. Очевидно, что для любого момента времени сумма
всех вероятностей состояний равна единице:
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
35

36. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
Для нахождения всех вероятностей состояний
как
функций времени составляются и решаются дифференциальные уравнения Колмогорова – особого вида уравнения, в которых неизвестными функциями являются вероятности состояний.
Для переходных вероятностей:
p ij (t) p ik (t) kj
k
Для безусловных вероятностей:
p j (t) p k (t) kj
k
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
36

37. Колмогоров Андрей Николаевич

Марковские процессы
Колмогоров Андрей Николаевич
1903-1987
Великий русский
математик.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
37

38. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
- интенсивности потока отказов;
- интенсивности потока восстановлений.
Пусть система находится в состоянии
S0. В состояние S1 ее переводит поток
отказов первого устройства. Его интенсивность равна
где
- среднее время безотказной работы устройства.
Из состояния S1 в S0 систему переводит поток восстановлений
первого устройства. Его интенсивность равна
где
- среднее время ремонта первого станка.
Аналогично вычисляются интенсивности потоков событий, переводящих систему по всем дугам графа.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
38

39. Системы массового обслуживания

Марковские процессы

Примеры систем массового обслуживания (СМО): телефонные станции, ремонтные мастерские,
билетные
кассы,
справочные
бюро,
станочные и другие технологические системы,
системы
управления
гибких
производственных систем,
обработка информации серверами и т.д.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
39

40. Системы массового обслуживания

Марковские процессы
Системы массового обслуживания
СМО состоит из какого – то количества обслуживающих
единиц, которые называются каналами обслуживания (это
станки, роботы, линии связи, кассиры и т.д.). Всякая СМО
предназначена для обслуживания потока заявок (требований), поступающих в случайные моменты времени.
Обслуживание заявки продолжается случайное время, после чего канал освобождается и готов к приему следующей
заявки.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
40

41. Системы массового обслуживания

Марковские процессы
Системы массового обслуживания
Процесс работы СМО – случайный процесс с дискретными
состояниями и непрерывным временем. Состояние СМО меняется скачком в моменты появления каких - то событий
(прихода новой заявки, окончания обслуживания, момента,
когда заявка, которой надоело ждать, покидает очередь).
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
41

42. Системы массового обслуживания

Марковские процессы
Системы массового обслуживания
Классификация систем массового обслуживания
1. СМО с отказами;
2. СМО с очередью.
В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем не
обслуживается.
В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной.
СМО с очередями подразделяются на разные виды в зависимости
от того, как организована очередь – ограничена или не ограничена. Ограничения могут касаться как длины очереди, так и времени
ожидания, «дисциплины обслуживания».
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
42

43. Системы массового обслуживания

Марковские процессы
Системы массового обслуживания
Предмет теории массового обслуживания – построение
математических моделей, связывающих заданные условия
работы СМО (число каналов, их производительность, правила
работы, характер потока заявок) с интересующими нас характеристиками – показателями эффективности СМО. Эти показатели описывают способность СМО справляться с потоком
заявок. Ими могут быть: среднее число заявок, обслуживаемых СМО в единицу времени; среднее число занятых каналов; среднее число заявок в очереди; среднее время ожидания обслуживания и т.д.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
43

44.

СПАСИБО
ЗА ВНИМАНИЕ!!!
44

45. Построить граф переходов

Марковские процессы
Построить граф переходов
0.30
0.70
0.0
0.10
0.60
0.30
0.50
0.50
0.0
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»

Для математического описания многих операций, развивающихся в форме случайного процесса, может быть с успехом применен математический аппарат, разработанный в теории вероятностей для Марковских случайных процессов.

Функция X(t) называется случайной, если ее значение при любом аргументе t является случайной величиной.

Случайная функция X(t) , аргументом которой является время, называетсяслучайным процессом .

Марковские процессы являются частным видом случайных процессов. Особое место марковских процессов среди других классов случайных процессов обусловлено следующими обстоятельствами: для марковских процессов хорошо разработан математический аппарат, позволяющий решать многие практические задачи; с помощью марковских процессов можно описать (точно или приближенно) поведение достаточно сложных систем.

Определение. Случайный процесс, протекающий в какой-либо системе S , называется марковским (или процессом без последействия), если он обладает следующим свойством: для любою момента времени t 0 вероятность любого состояния системы в будущем (при t > t 0 ) зависит только от ее состояния в настоящем (при t = t 0 ) и не зависит от того, когда и каким образом система S пришла в это состояние. То есть в марковском случайном процессе будущее развитие процесса не зависит от его предыстории.

Классификация марковских процессов. Классификация марковских случайных процессов производится в зависимости от непрерывности или дискретности множества значений функции X(t) и параметра t . Различают следующие основные виды марковских случайных процессов:

· с дискретными состояниями и дискретным временем (цепь Маркова);

· с непрерывными состояниями и дискретным временем (марковские последовательности);

· с дискретными состояниями и непрерывным временем (непрерывная цепь Маркова);

· с непрерывным состоянием и непрерывным временем.

Здесь будут рассматриваться только марковские процессы с дискретными состояниями S 1 , S 2 ,…, S n . То есть эти состояния можно перенумеровать одно за другим, а сам процесс состоит в том, что система случайным образом скачком меняет свое состояние.

Граф состояний. Марковские процессы с дискретными состояниями удобно иллюстрировать с помощью так называемого графа состояний (рис. 1.1.), где квадратиками обозначены состояния S 1 , S 2 , ... системы S , а стрелками - возможные переходы из состояния в состояние. На графе отмечаются только непосредственные переходы, а не переходы через другие состояния. Возможные задержки в прежнем состоянии изображают «петлей», т. е. стрелкой, направленной из данного состояния в него же. Число состояний системы может быть как конечным, так и бесконечным (но счетным).


Рис. 3.1. Граф состояний системы S

Задача 1. Система S – автомобиль, которая может находиться в одном из пяти состояний.

S 1 – исправна, работает;

S 2 – неисправна, ожидает осмотра;

S 3 –осматривается;

S 4 – ремонтируется;

S 5 – списана.

Построить граф состояний системы.

Задача 2. Техническое устройство S состоит из 2-х узлов: 1 и 2, каждый из которых может в любой момент времени отказать. У каждого узла может быть только 2 состояния. 1 – исправен, 2 – неисправен. Построить граф состояний системы.

Задача 3. Построить граф состояний в условиях предыдущей задачи, предполагая, что ремонт узлов в ходе процесса не производится.

Задача 4. Техническое устройство S состоит из 2-х узлов: 1 и 2, каждый из которых может в любой момент времени отказать. Каждый узел, перед тем как начать восстанавливаться подвергается осмотру с целью локализации неисправности. Состояния системы нумеруются 2-мя индексами: S ij (i – состояния первого узла, j – состояния второго узла). У каждого узла три состояния (работает, осматривается, восстанавливается).

Теория массового обслуживания составляет один из разделов теории вероятностей. В этой теории рассматриваются вероятностные задачи и математические модели (до этого нами рассматривались детерминированные математические модели). Напомним, что:

Детерминированная математическая модель отражает поведение объекта (системы, процесса) с позицийполной определенности в настоящем и будущем.

Вероятностная математическая модель учитывает влияние случайных факторов на поведение объекта (системы, процесса) и, следовательно, оценивает будущее с позиций вероятности тех или иных событий.

Т.е. здесь как, например, в теории игр задачи рассматриваются в условиях неопределенности .

Рассмотрим сначала некоторые понятия, которые характеризуют «стохастическую неопределенность», когда неопределенные факторы, входящие в задачу, представляют собой случайные величины (или случайные функции), вероятностные характеристики которых либо известны, либо могут быть получены из опыта. Такую неопределенность называют еще «благоприятной», «доброкачественной».

Понятие случайного процесса

Строго говоря, случайные возмущения присущи любому процессу. Проще привести примеры случайного, чем «неслучайного» процесса. Даже, например, процесс хода часов (вроде бы это строгая выверенная работа – «работает как часы») подвержен случайным изменениям (уход вперед, отставание, остановка). Но до тех пор, пока эти возмущения несущественны, мало влияют на интересующие нас параметры, мы можем ими пренебречь и рассматривать процесс как детерминированный, неслучайный.

Пусть имеется некоторая система S (техническое устройство, группа таких устройств, технологическая система – станок, участок, цех, предприятие, отрасль промышленности и т.д.). В системеS протекаетслучайный процесс , если она с течением времени меняет свое состояние (переходит из одного состояния в другое), причем, заранее неизвестным случайным образом.

Примеры: 1. СистемаS – технологическая система (участок станков). Станки время от времени выходят из строя и ремонтируются. Процесс, протекающий в этой системе, случаен.

2. Система S – самолет, совершающий рейс на заданной высоте по определенному маршруту. Возмущающие факторы – метеоусловия, ошибки экипажа и т.д., последствия – «болтанка», нарушение графика полетов и т.д.

Марковский случайный процесс

Случайный процесс, протекающий в системе, называется Марковским , если для любого момента времениt 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный моментt 0 и не зависят от того, когда и как система пришла в это состояние.

Пусть в настоящий момент t 0 система находится в определенном состоянииS 0 . Мы знаем характеристики состояния системы в настоящеми все, что было приt <t 0 (предысторию процесса). Можем ли мы предугадать (предсказать) будущее, т.е. что будет приt >t 0 ? В точности – нет, но какие-то вероятностные характеристики процесса в будущем найти можно. Например, вероятность того, что через некоторое времясистемаS окажется в состоянииS 1 или останется в состоянииS 0 и т.д.

Пример . СистемаS – группа самолетов, участвующих в воздушном бою. Пустьx – количество «красных» самолетов,y – количество «синих» самолетов. К моменту времениt 0 количество сохранившихся (не сбитых) самолетов соответственно –x 0 ,y 0 . Нас интересует вероятность того, что в момент временичисленный перевес будет на стороне «красных». Эта вероятность зависит от того, в каком состоянии находилась система в момент времениt 0 , а не от того, когда и в какой последовательности погибали сбитые до моментаt 0 самолеты.

На практике Марковские процессы в чистом виде обычно не встречаются. Но имеются процессы, для которых влиянием «предистории» можно пренебречь. И при изучении таких процессов можно применять Марковские модели (в теории массового обслуживания рассматриваются и не Марковские системы массового обслуживания, но математический аппарат, их описывающий, гораздо сложнее).

В исследовании операций большое значение имеют Марковские случайные процессы с дискретными состояниями и непрерывным временем.

Процесс называется процессом с дискретным состоянием , если его возможные состоянияS 1 ,S 2 , … можно заранее определить, и переход системы из состояния в состояние происходит «скачком», практически мгновенно.

Процесс называется процессом с непрерывным временем , если моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны и могут произойти в любой момент.

Пример . Технологическая система (участок)S состоит из двух станков, каждый из которых в случайный момент времени может выйти из строя (отказать), после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время. Возможны следующие состояния системы:

S 0 - оба станка исправны;

S 1 - первый станок ремонтируется, второй исправен;

S 2 - второй станок ремонтируется, первый исправен;

S 3 - оба станка ремонтируются.

Переходы системы S из состояния в состояние происходят практически мгновенно, в случайные моменты выхода из строя того или иного станка или окончания ремонта.

При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой – графом состояний . Вершины графа – состояния системы. Дуги графа – возможные переходы из состояния в

Рис.1. Граф состояний системы

состояние. Для нашего примера граф состояний приведен на рис.1.

Примечание. Переход из состояния S 0 вS 3 на рисунке не обозначен, т.к. предполагается, что станки выходят из строя независимо друг от друга. Вероятностью одновременного выхода из строя обоих станков мы пренебрегаем.



просмотров