Понятие числа. Виды чисел. Процедуры и функции - методы класса Виды чисел и их обозначения

Понятие числа. Виды чисел. Процедуры и функции - методы класса Виды чисел и их обозначения

Это числа, которые используются при счете: 1, 2, 3... и т.д.

Ноль не является натуральным.

Натуральные числа принято обозначать символом N .

Целые числа. Положительные и отрицательные числа

Два числа отличающиеся друг от друга только знаком, называются противоположными , например, +1 и -1, +5 и -5. Знак "+" обычно не пишут, но предполагают, что перед числом стоит "+". Такие числа называются положительными . Числа, перед которыми стоит знак "-", называются отрицательными .

Натуральные числа, противоположные им и ноль называют целыми числами. Множество целых чисел обозначают символом Z .

Рациональные числа

Это конечные дроби и бесконечные периодические дроби. Например,

Множество рациональных чисел обозначается Q . Все целые числа являются рациональными.

Иррациональные числа

Бесконечная непериодическая дробь называется иррациональным числом. Например:

Множество иррациональных чисел обозначается J .

Действительные числа

Множество всех рациональных и всех иррациональных чисел называется множеством действительных (вещественных) чисел.

Действительные числа обозначаются символом R .

Округление чисел

Рассмотрим число 8,759123... . Округлить до целой части означает записать лишь ту часть числа, которая находится до запятой. Округлить до десятых означает записать целую часть и после запятой одну цифру; округлить до сотых - после запятой две цифры; до тысячных - три цифры и т.д.

Числа разделяются на классы. Целые положительные числа - N = {1, 2, 3, … } - составляют множество натуральных чисел. Зачастую и 0 считают натуральным числом.

Множество целых чисел Z включает в себя все натуральные числа, число 0 и все натуральные числа, взятые со знаком минус: Z = {0, 1, -1, 2, -2, …}.

Каждое рациональное число x можно задать парой целых чисел (m, n), где m является числителем, n - знаменателем числа: x = m/n. Эквивалентным представлением рационального числа является его задание в виде числа, записанного в позиционной десятичной системе счисления, где дробная часть числа может быть конечной или бесконечной периодической дробью. Например, число x = 1/3 = 0,(3) представляется бесконечной периодической дробью.

Числа, задаваемые бесконечными непериодическими дробями, называются иррациональными числами . Таковыми являются, например, все числа вида vp, где p - простое число. Иррациональными являются известные всем числа и e.

Объединение множеств целых, рациональных и иррациональных чисел составляет множество вещественных чисел. Геометрическим образом множества вещественных чисел является прямая линия - вещественная ось, где каждой точке оси соответствует некоторое вещественное число, так что вещественные числа плотно и непрерывно заполняют всю вещественную ось.

Плоскость представляет геометрический образ множества комплексных чисел, где вводятся уже две оси - вещественная и мнимая. Каждое комплексное число, задаваемое парой вещественных чисел, представимо в виде: x = a+b*i, где a и b - вещественные числа, которые можно рассматривать как декартовы координаты числа на плоскости.

Делители и множители

Рассмотрим сейчас классификацию, которая делит множество натуральных чисел на два подмножества - простых и составных чисел. В основе этой классификации лежит понятие делимости натуральных чисел. Если n делится нацело на d, то говорят, что d "делит" n, и записывают это в виде: . Заметьте, это определение, возможно, не соответствует интуитивному пониманию: d "делит" n, если n делится на d, а не наоборот. Число d называется делителем числа n. У каждого числа n есть два тривиальных делителя - 1 и n. Делители, отличные от тривиальных, называются множителями числа n. Число n называется простым, если у него нет делителей, отличных от тривиальных. Простые числа делятся только на 1 и сами на себя. Числа, у которых есть множители, называются составными. Число 1 является особым числом, поскольку не относится ни к простым, ни к составным числам. Отрицательные числа также не относятся ни к простым, ни к составным, но всегда можно рассматривать модуль числа и относить его к простым или составным числам.

Любое составное число N можно представить в виде произведения его множителей: . Это представление не единственно, например 96 = 8*12 = 2*3*16. Однако для каждого составного числа N существует единственное представление в виде произведения степеней простых чисел: , где - простые числа и . Это представление называется разложением числа N на простые множители. Например .

Если и , то d является общим делителем чисел m и n. Среди всех общих делителей можно выделить наибольший общий делитель, обозначаемый как НОД(m,n). Если НОД(m,n) = 1, то числа m и n называются взаимно простыми. Простые числа взаимно просты, так что НОД(q,p) =1, если q и p - простые числа.

Если и , то A является общим кратным чисел m и n. Среди всех общих кратных можно выделить наименьшее общее кратное, обозначаемое как НОК(m,n). Если НОК(m,n) = m*n, то числа m и n являются взаимно простыми. НОК(q, p) =q*p, если q и p - простые числа.

Если через и обозначить множества всех простых множителей чисел m и n, то

Если получено разложение чисел m и n на простые множители, то, используя приведенные соотношения, нетрудно вычислить НОД(m,n) и НОК(m,n). Существуют и более эффективные алгоритмы, не требующие разложения числа на множители.

Алгоритм Эвклида

Эффективный алгоритм вычисления НОД(m,n) предложен еще Эвклидом. Он основывается на следующих свойствах НОД(m,n), доказательство которых предоставляется читателю:

Если , то по третьему свойству его можно уменьшить на величину n. Если же , то по второму свойству аргументы можно поменять местами и вновь придти к ранее рассмотренному случаю. Когда же в результате этих преобразований значения аргументов сравняются, то решение будет найдено. Поэтому можно предложить следующую схему:

while(m != n) { if(m < n) swap(m,n); m = m - n; } return(m);

Здесь процедура swap выполняет обмен значениями аргументов.

Если немного подумать, то становится ясно, что вовсе не обязательно обмениваться значениями - достаточно на каждом шаге цикла изменять аргумент с максимальным значением. В результате приходим к схеме:

while(m != n) { if(m > n) m = m - n; else n = n - m; } return(m);

Если еще немного подумать, то можно улучшить и эту схему, перейдя к циклу с тождественно истинным условием:

while(true) { if(m > n) m = m - n; else if (n > m) n = n - m; else return(m); }

Последняя схема хороша тем, что в ней отчетливо видна необходимость доказательства завершаемости этого цикла. Доказать завершаемость цикла нетрудно, используя понятие варианта цикла . Для данного цикла вариантом может служить целочисленная функция - max(m,n) , которая уменьшается на каждом шаге, оставаясь всегда положительной.

Достоинством данной версии алгоритма Эвклида является и то, что на каждом шаге используется элементарная и быстрая операция над целыми числами - вычитание. Если допустить операцию вычисления остатка при делении нацело, то число шагов цикла можно существенно уменьшить. Справедливо следующее свойство:

Это приводит к следующей схеме:

int temp; if(n>m) temp = m; m = n; n = temp; //swap(m,n) while(m != n) { temp = m; m = n; n = temp%n; }

Если немного подумать, то становится ясно, что вовсе не обязательно выполнять проверку перед началом цикла. Это приводит к более простой схеме вычисления НОД, применяемой обычно на практике:

int temp; while(m != n) { temp = m; m = n; n = temp%n; }

Для вычисления НОК(m, n) можно воспользоваться следующим соотношением:

А можно ли вычислить НОК(m, n), не используя операций умножения и деления? Оказывается, можно одновременно с вычислением НОД(m,n) вычислять и НОК(m,n). Вот соответствующая схема:

int x = v = m, y = u = n,; while(x != y) { if(x > y){ x = x - y; v = v + u;} else {y = y - x; u = u + v;} } НОД = (x + y)/2; НОК = (u+v)/2;

Доказательство того, что эта схема корректно вычисляет НОД, следует из ранее приведенных свойств НОД. Менее очевидна корректность вычисления НОК. Для доказательства заметьте, что инвариантом цикла является следующее выражение:

Это соотношение выполняется после инициализации переменных до начала выполнения цикла. По завершении цикла, когда x и y становятся равными НОД, из истинности инварианта следует корректность схемы. Нетрудно проверить, что операторы тела цикла оставляют утверждение истинным. Детали доказательства оставляются читателям.

Понятие НОД и НОК можно расширить, определив их для всех целых чисел. Справедливы следующие соотношения:

Расширенный алгоритм Эвклида

Иногда полезно представлять НОД(m,n) в виде линейной комбинации m и n:

В частности, вычисление коэффициентов a и b необходимо в алгоритме RSA - шифрования с открытым ключом. Приведу схему алгоритма, позволяющую вычислить тройку - d, a, b - наибольший общий делитель и коэффициенты разложения. Алгоритм удобно реализовать в виде рекурсивной процедуры

ExtendedEuclid(int m, int n, ref int d, ref int a, ref int b),

которая по заданным входным аргументам m и n вычисляет значения аргументов d, a, b. Нерекурсивная ветвь этой процедуры соответствует случаю n = 0, возвращая в качестве результата значения: d = m, a = 1, b = 0. Рекурсивная ветвь вызывает

ExtendedEuclid(n, m % n, ref d, ref a, ref b)

и затем изменяет полученные в результате вызова значения a и b следующим образом:

Доказательство корректности этого алгоритма построить нетрудно. Для нерекурсивной ветви корректность очевидна, а для рекурсивной ветви нетрудно показать, что из истинности результата, возвращаемого при рекурсивном вызове, следует его истинность для входных аргументов после пересчета значений a и b.

Как работает эта процедура? Вначале происходит рекурсивный спуск, пока n не станет равно нулю.

В этот момент впервые будет вычислено значение d и значения параметров a и b. После этого начнется подъем и будут перевычисляться параметры a и b.

Задачи
  • 49. Даны m и n - натуральные числа. Вычислите НОД(m, n). При вычислениях не используйте операций умножения и деления.
  • 50. Даны m и n - натуральные числа. Вычислите НОК(m, n).
  • 51. Даны m и n - натуральные числа. Вычислите НОК(m, n). При вычислениях не используйте операций умножения и деления.
  • 52. Даны m и n - целые числа. Вычислите НОД(m, n). При вычислениях не используйте операций умножения и деления.
  • 53. Даны m и n - целые числа. Вычислите НОК(m, n). При вычислениях не используйте операций умножения и деления.
  • 54. Даны m и n - целые числа. Вычислите НОД(m, n). При вычислениях используйте операцию взятия остатка от деления нацело.
  • 55. Даны m и n - целые числа. Вычислите НОК(m, n). При вычислениях используйте операцию взятия остатка от деления нацело.
  • 56. Даны m и n - целые числа. Вычислите тройку чисел - (d, a, b), используя расширенный алгоритм Эвклида.
  • 57. Даны m и n - натуральные числа. Представьте НОД(m, n) в виде линейной комбинации m и n.
  • 58. Даны m и n - целые числа. Представьте НОД(m, n) в виде линейной комбинации m и n.
  • 59. Даны m и n - целые числа. Проверьте, являются ли числа m и n взаимно простыми.
Простые числа

Среди четных чисел есть только одно простое число - это 2. Простых нечетных чисел сколь угодно много. Нетрудно доказать, что число , где - подряд идущие простые числа, является простым. Так что, если построено простых чисел, то можно построить еще одно простое число , большее . Отсюда следует, что множество простых чисел неограниченно. Пример: число N = 2*3*5*7 + 1 = 211 является простым числом.

Решето Эратосфена

Как определить, что число N является простым? Если допустима операция N % m, дающая остаток от деления числа N на число m, то простейший алгоритм состоит в проверке того, что остаток не равен нулю при делении числа N на все числа m, меньшие N. Очевидным улучшением этого алгоритма является сокращение диапазона проверки - достаточно рассматривать числа m в диапазоне .

Еще в 3-м веке до н.э. греческий математик Эратосфен предложил алгоритм нахождения простых чисел в диапазоне , не требующий операций деления. Этот алгоритм получил название "Решето Эратосфена". В компьютерном варианте идею этого алгоритма можно описать следующим образом. Построим массив Numbers, элементы которого содержат подряд идущие нечетные числа, начиная с 3. Вначале все числа этого массива считаются невычеркнутыми. Занесем первое невычеркнутое число из этого массива в массив SimpleNumbers - и это будет первое нечетное простое число (3). Затем выполним просеивание, проходя по массиву Numbers с шагом, равным найденному простому числу, вычеркивая все попадающиеся при этом проходе числа. При первом проходе будет вычеркнуто число 3 и все числа, кратные 3. На следующем проходе в таблицу простых чисел будет занесено следующее простое число 5, а из массива Numbers будут вычеркнуты числа, кратные 5. Процесс повторяется, пока не будут вычеркнуты все числа в массиве Numbers. В результате массив SimpleNumbers будет содержать таблицу первых простых чисел, меньших N.

Этот алгоритм хорош для нахождения сравнительно небольших простых чисел. Но если потребуется найти простое число с двадцатью значащими цифрами, то памяти компьютера уже не хватит для хранения соответствующих массивов. Замечу, что в современных алгоритмах шифрования используются простые числа, содержащие несколько сотен цифр.

Плотность простых чисел

Мы показали, что число простых чисел неограниченно. Понятно, что их меньше, чем нечетных чисел, но насколько меньше? Какова плотность простых чисел? Пусть - это функция, возвращающая число простых чисел, меньших n. Точно задать эту функцию не удается, но для нее есть хорошая оценка. Справедлива следующая теорема:

Функция асимптотически сверху приближается к своему пределу, так что оценка дает слегка заниженные значения. Эту оценку можно использовать в алгоритме решета Эратосфена для выбора размерности массива SimpleNumbers, когда задана размерность массива Numbers, и, наоборот, при заданной размерности таблицы простых чисел можно выбрать подходящую размерность для массива Numbers.

Табличный алгоритм определения простоты чисел

Если хранить таблицу простых чисел SimpleNumbers, в которой наибольшее простое число равно M, то достаточно просто определить, является ли число N, меньшее , простым. Если N меньше M, то достаточно проверить, находится ли число N в таблице SimpleNumbers. Если N больше M, то достаточно проверить, делится ли число N на числа из таблицы SimpleNumbers, не превосходящие значения vN. Понятно, что если у числа N нет простых множителей, меньших vN, то число N является простым.

Использование таблицы простых чисел требует соответствующей памяти компьютера, а следовательно, ограничивает возможности этого алгоритма, не позволяя использовать его для нахождения больших простых чисел.

Тривиальный алгоритм

Если N - нечетное число, то проверить, что оно является простым, можно на основе определения простоты числа. При этом не требуется никакой памяти для хранения таблиц чисел, - но, как всегда, выигрывая в памяти, мы проигрываем во времени. Действительно, достаточно проверить, делится ли нацело число N на подряд идущие нечетные числа в диапазоне . Если у числа N есть хоть один множитель, то оно составное, иначе - простое.

Все рассмотренные алгоритмы перестают эффективно работать, когда числа выходят за пределы разрядной сетки компьютера, отведенной для представления чисел, так что если возникает необходимость работы с целыми числами, выходящими за пределы диапазона System.Int64, то задача определения простоты такого числа становится совсем не простой. Существуют некоторые рецепты, позволяющие определить, что число является составным. Вспомним хотя бы известные со школьных времен алгоритмы. Если последняя цифра числа делится на 2, то и число делится на 2. Если две последние цифры числа делятся на 4, то и число делится на 4. Если сумма цифр делится на 3 (на 9), то и число делится на 3 (на 9). Если последняя цифра равна 0 или 5, то число делится на 5. Математики затратили много усилий, доказывая, что то или иное число является (или не является) простым числом. Сейчас есть особые приемы, позволяющие доказать, что числа некоторого вида являются простыми. Наиболее подходящими кандидатами на простоту являются числа вида , где p - это простое число. Например, доказано, что число , имеющее более 6000 цифр, является простым, но нельзя сказать, какие простые числа являются ближайшими соседями этого числа.

Задачи

Проекты

  • 67. Построить класс "Температура", позволяющий задавать температуру в разных единицах измерения. Построить Windows-проект, поддерживающий интерфейс для работы с классом.
  • 68. Построить класс "Расстояния", позволяющий использовать разные системы мер. Построить Windows-проект, поддерживающий интерфейс для работы с классом.
  • 69. Построить класс "Простые числа". Построить Windows-проект, поддерживающий интерфейс для работы с классом.
  • 70. Построить класс "Системы счисления". Построить Windows-калькулятор, поддерживающий вычисления в заданной системе счисления.
  • 71. Построить класс "Рациональные числа". Построить Windows-калькулятор, поддерживающий вычисления с этими числами.
  • 72. Построить класс "Комплексные числа". Построить Windows-калькулятор, поддерживающий вычисления с этими числами.

Из огромного многообразия всевозможных множеств особый интерес представляют так называемые числовые множества , то есть, множества, элементами которых являются числа. Понятно, что для комфортной работы с ними нужно уметь их записывать. С обозначений и принципов записи числовых множеств мы и начнем эту статью. А дальше рассмотрим, как числовые множества изображаются на координатной прямой.

Навигация по странице.

Запись числовых множеств

Начнем с принятых обозначений. Как известно, для обозначения множеств используются заглавные буквы латинского алфавита. Числовые множества, как частный случай множеств, обозначаются также. Например, можно говорить о числовых множествах A , H , W и т.п. Особую важность имеют множества натуральных, целых, рациональных, действительных, комплексных чисел и т.п., для них были приняты свои обозначения:

  • N – множество всех натуральных чисел;
  • Z – множество целых чисел;
  • Q – множество рациональных чисел;
  • J – множество иррациональных чисел;
  • R – множество действительных чисел;
  • C – множество комплексных чисел.

Отсюда понятно, что не стоит обозначать множество, состоящее, к примеру, из двух чисел 5 и −7 как Q , это обозначение будет вводить в заблуждение, так как буквой Q обычно обозначают множество всех рациональных чисел. Для обозначения указанного числового множества лучше использовать какую-нибудь другую «нейтральную» букву, например, A .

Раз уж мы заговорили про обозначения, то здесь напомним и про обозначение пустого множества, то есть множества, не содержащего элементов. Его обозначают знаком ∅.

Также напомним про обозначение принадлежности и непринадлежности элемента множеству. Для этого используют знаки ∈ - принадлежит и ∉ - не принадлежит. Например, запись 5∈N означает, что число 5 принадлежит множеству натуральных чисел, а 5,7∉Z – десятичная дробь 5,7 не принадлежит множеству целых чисел.

И еще напомним про обозначения, принятые для включения одного множества в другое. Понятно, что все элементы множества N входят в множество Z , таким образом, числовое множество N включено в Z , это обозначается как N⊂Z . Также можно использовать запись Z⊃N , которая означает, что множество всех целых чисел Z включает множество N . Отношения не включено и не включает обозначаются соответственно знаками ⊄ и ⊅. Также используются знаки нестрогого включения вида ⊆ и ⊇, означающие соответственно включено или совпадает и включает или совпадает.

Про обозначения поговорили, переходим к описанию числовых множеств. При этом затронем лишь основные случаи, которые наиболее часто используются на практике.

Начнем с числовых множеств, содержащих конечное и небольшое количество элементов. Числовые множества, состоящие из конечного числа элементов, удобно описывать, перечисляя все их элементы. Все элементы-числа записываются через запятую и заключаются в , что согласуется с общими правилами описания множеств . Например, множество, состоящее из трех чисел 0 , −0,25 и 4/7 можно описать как {0, −0,25, 4/7} .

Иногда, когда число элементов числового множества достаточно велико, но элементы подчиняются некоторой закономерности, для описания используют многоточие. Например, множество всех нечетных чисел от 3 до 99 включительно можно записать как {3, 5, 7, …, 99} .

Так мы плавно подошли к описанию числовых множеств, число элементов которых бесконечно. Иногда их можно описать, используя все тоже многоточие. Для примера опишем множество всех натуральных чисел: N={1, 2. 3, …} .

Также пользуются описанием числовых множеств посредством указания свойств его элементов. При этом применяют обозначение {x| свойства} . Например, запись {n| 8·n+3, n∈N} задает множество таких натуральных чисел, которые при делении на 8 дают остаток 3 . Это же множество можно описать как {11,19, 27, …} .

В частных случаях числовые множества с бесконечным числом элементов представляют собой известные множества N , Z , R , и т.п. или числовые промежутки. А в основном числовые множества представляются как объединение составляющих их отдельных числовых промежутков и числовых множеств с конечным числом элементов (о которых мы говорили чуть выше).

Покажем пример. Пусть числовое множество составляют числа −10 , −9 , −8,56 , 0 , все числа отрезка [−5, −1,3] и числа открытого числового луча (7, +∞) . В силу определения объединения множеств указанное числовое множество можно записать как {−10, −9, −8,56}∪[−5, −1,3]∪{0}∪(7, +∞) . Такая запись фактически означает множество, содержащее в себе все элементы множеств {−10, −9, −8,56, 0} , [−5, −1,3] и (7, +∞) .

Аналогично, объединяя различные числовые промежутки и множества отдельных чисел, можно описать любое числовое множество (состоящее из действительных чисел). Здесь становится понятно, почему были введены такие виды числовых промежутков как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч: все они в купе с обозначениями множеств отдельных чисел позволяют описывать любые числовых множества через их объединение.

Обратите внимание, что при записи числового множества составляющие его числа и числовые промежутки упорядочиваются по возрастанию. Это не обязательное, но желательное условие, так как упорядоченное числовое множество проще представить и изобразить на координатной прямой. Также отметим, что в подобных записях не используются числовые промежутки с общими элементами, так как такие записи можно заменить объединением числовых промежутков без общих элементов. Например, объединение числовых множеств с общими элементами [−10, 0] и (−5, 3) есть полуинтервал [−10, 3) . Это же относится и к объединению числовых промежутков с одинаковыми граничными числами, например, объединение (3, 5]∪(5, 7] представляет собой множество (3, 7] , на этом мы отдельно остановимся, когда будем учиться находить пересечение и объединение числовых множеств .

Изображение числовых множеств на координатной прямой

На практике удобно пользоваться геометрическими образами числовых множеств – их изображениями на . Например, при решении неравенств , в которых необходимо учитывать ОДЗ, приходится изображать числовые множества, чтобы найти их пересечение и/или объединение. Так что полезно будет хорошо разобраться со всеми нюансами изображения числовых множеств на координатной прямой.

Известно, что между точками координатной прямой и действительными числами существует взаимно однозначное соответствие, что означает, что сама координатная прямая представляет собой геометрическую модель множества всех действительных чисел R . Таким образом, чтобы изобразить множество всех действительных чисел, надо начертить координатную прямую со штриховкой на всем ее протяжении:

А часто даже не указывают начало отсчета и единичный отрезок:

Теперь поговорим про изображение числовых множеств, представляющих собой некоторое конечное число отдельных чисел. Для примера, изобразим числовое множество {−2, −0,5, 1,2} . Геометрическим образом данного множества, состоящего из трех чисел −2 , −0,5 и 1,2 будут три точки координатной прямой с соответствующими координатами:

Отметим, что обычно для нужд практики нет необходимости выполнять чертеж точно. Часто достаточно схематического чертежа, что подразумевает необязательное выдерживание масштаба, при этом важно лишь сохранять взаимное расположение точек относительно друг друга: любая точка с меньшей координатой должна быть левее точки с большей координатой. Предыдущий чертеж схематически будет выглядеть так:

Отдельно из всевозможных числовых множеств выделяют числовые промежутки (интервалы, полуинтервалы, лучи и т.д.), что представляют их геометрические образы, мы подробно разобрались в разделе . Здесь не будем повторяться.

И остается остановиться лишь на изображении числовых множеств, представляющих собой объединение нескольких числовых промежутков и множеств, состоящих из отдельных чисел. Здесь нет ничего хитрого: по смыслу объединения в этих случаях на координатной прямой нужно изобразить все составляющие множества данного числового множества. В качестве примера покажем изображение числового множества (−∞, −15)∪{−10}∪[−3,1)∪ {log 2 5, 5}∪(17, +∞) :

И остановимся еще на достаточно распространенных случаях, когда изображаемое числовое множество представляет собой все множество действительных чисел, за исключением одной или нескольких точек. Такие множества частенько задаются условиями типа x≠5 или x≠−1 , x≠2 , x≠3,7 и т.п. В этих случаях геометрически они представляют собой всю координатную прямую, за исключением соответствующих точек. Иными словами, из координатной прямой нужно «выколоть» эти точки. Их изображают кружочками с пустым центром. Для наглядности изобразим числовое множество, соответствующее условиям (это множество по сути есть ):

Подведем итог. В идеале информация предыдущих пунктов должна сформировать такой же взгляд на запись и изображение числовых множеств, как и взгляд на отдельные числовые промежутки: запись числового множества сразу должна давать его образ на координатной прямой, а по изображению на координатной прямой мы должны быть готовы с легкостью описать соответствующее числовое множество через объединение отдельных промежутков и множеств, состоящих из отдельных чисел.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.

Понятие действительного числа: действительное число - (вещественное число), всякое неотрицательное или отрицательное число либо нуль. С помощью действительных чисел выражают измерения каждой физической величины .

Вещественное , или действительное число возникло из необходимости измерений геометрической и физической величин мира. Кроме того, для проведения операций извлечения корня, вычисления логарифма, решения алгебраических уравнений и т.д.

Натуральные числа образовались с развитием счета, а рациональные с потребностью управлять частями целого, то вещественные числа (действительные) используются для измерений непрерывных величин. Т.о., расширение запаса чисел, которые рассматриваются, привело к множеству вещественных чисел, которое кроме рациональных чисел состоит из других элементов, называемых иррациональные числа .

Множество действительных чисел (обозначается R ) - это множества рациональных и иррациональных чисел собранные вместе.

Действительные числа делят на рациональные и иррациональные .

Множество вещественных чисел обозначают и зачастую называют вещественной или числовой прямой . Вещественные числа состоят из простых объектов: целых и рациональных чисел .

Число, которое возможно записать как отношение, где m - целое число, а n - натуральное число, является рациональным числом .

Всякое рациональное число легко представить как конечную дробь либо бесконечную периодическую десятичную дробь.

Пример ,

Бесконечная десятичная дробь , это десятичная дробь, у которой после запятой есть бесконечное число цифр.

Числа, которые нельзя представить в виде , являются иррациональными числами .

Пример:

Всякое иррациональное число легко представить как бесконечную непериодическую десятичную дробь.

Пример ,

Рациональные и иррациональные числа создают множество действительных чисел. Всем действительным числам соответствует одна точка координатной прямой, которая называется числовая прямая .

Для числовых множеств используются обозначения:

  • N - множество натуральных чисел;
  • Z - множество целых чисел;
  • Q - множество рациональных чисел;
  • R - множество действительных чисел.

Теория бесконечных десятичных дробей.

Вещественное число определяется как бесконечная десятичная дробь , т.е.:

±a 0 ,a 1 a 2 …a n …

где ± есть один из символов + или −, знак числа,

a 0 — целое положительное число,

a 1 ,a 2 ,…a n ,… — последовательность десятичных знаков, т.е. элементов числового множества {0,1,…9}.

Бесконечную десятичную дробь можно объяснить как число, которое на числовой прямой находится между рациональными точками типа:

±a 0 ,a 1 a 2 …a n и ±(a 0 ,a 1 a 2 …a n +10 −n) для всех n=0,1,2,…

Сравнение вещественных чисел как бесконечных десятичных дробей происходит поразрядно. Например , предположим даны 2 положительны числа:

α =+a 0 ,a 1 a 2 …a n …

β =+b 0 ,b 1 b 2 …b n …

Если a 0 0, то α<β ; если a 0 >b 0 то α>β . Когда a 0 =b 0 переходим к сравнению следующего разряда. И т.д. Когда α≠β , значит после конечного количества шагов встретится первый разряд n , такой что a n ≠b n . Если a n n , то α<β ; если a n >b n то α>β .

Но при этом нудно обратить внимание на то, что число a 0 ,a 1 a 2 …a n (9)=a 0 ,a 1 a 2 …a n +10 −n . Поэтому если запись одного из сравниваемых чисел, начиная с некоторого разряда это периодическая десятичная дробь, у которой в периоде стоит 9, то её нужно заменить на эквивалентную запись, с нулем в периоде.

Арифметические операции с бесконечными десятичными дробями это непрерывное продолжение соответствующих операций с рациональными числами. Например , суммой вещественных чисел α и β является вещественное число α+β , которое удовлетворяет таким условиям:

a′,a′′,b′,b′′ Q(a′ α a′′) (b′ β b′′) (a′+b′ α + β a′′+b′′)

Аналогично определяет операция умножения бесконечных десятичных дробей.

Данная статья посвящена теме "Действительные числа". В статье дается определение действительных чисел, иллюстрируется их положение на координатной прямой, рассматриваются способы задания действительных чисел числовыми выражениями.

Определение действительных чисел

Целые и дробные числа вместе составляют рациональные числа. В свою очередь, рациональные и иррациональные числа составляют действительные числа. Как дать определение, что такое действительные числа?

Определение 1

Действительные числа - это рациональные и иррациональные числа. Множество действительных чисел обозначается через R.

Данное определение можно записать иначе с учетом следующего:

  1. Рациональные числа можно представить в виде конечной десятичной дроби или бесконечной периодической десятичной дроби.
  2. Иррациональные числа представляют собой бесконечные непериодические десятичные дроби.
Определение 2

Действительные числа - числа, которые можно записать в виде конечной или бесконечной (периодической или непериодической) десятичной дроби.

Действительные числа - это любые рациональные и иррациональные числа. Приведем примеры таких чисел: 0 ; 6 ; 458 ; 1863 ; 0 , 578 ; - 3 8 ; 26 5 ; 0 , 145 (3) ; log 5 12 .

Нуль также является действительным числом. Согласно определению, существуют как положительные, так и отрицательные действительные числа. Нуль является единственным действительным числом, которое не положительно и не отрицательно.

Еще одно название для действительных чисел - вещественные числа. Эти числа позволяют описывать значение непрерывно меняющейся величины без введения эталонного (единичного) значения этой величины.

Координатная прямая и действительные числа

Каждой точке не координатной прямой соответствует определенное и единственное действительное число. Иными словами, действительные числа занимают всю координатную прямую, а между точками кривой и числами присутствует взаимно-однозначное соответствие.

Представления действительных чисел

Под определение дейситвительных чисел попадают:

  1. Натуральные числа.
  2. Целые числа.
  3. Десятичные дроби.
  4. Обыкновенные дроби.
  5. Смешанные числа.

Также действительные числа часто представляются в виде выражений со степенями, корнями и логарифмами. Сумма, разность произведение и частное действительных чисел также являются действительными числами.

Значение любого выражения, составленного из действительных чисел, также будет являться действительным числом.

Например, значения выражений sin 2 3 π · e - 2 8 5 · 10 log 3 2 и t g 6 7 6 693 - 8 π 3 2 - действительные числа.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter



просмотров