Деление понятия – это логическая операция, в результате которой со­вершают переход от родового понятия к множеству видовых понятий. Почему нельзя делить на ноль? Наглядный пример

Деление понятия – это логическая операция, в результате которой со­вершают переход от родового понятия к множеству видовых понятий. Почему нельзя делить на ноль? Наглядный пример

  • Tutorial

Моя трёхлетняя дочка София в последнее время частенько упоминает «ноль», например, в таком контексте:

- Соня, вот ты вроде сначала не послушалась, а затем послушалась, что же получается?..
- Ну… ноль!

Т.е. ощущение отрицательных чисел и нейтральности нуля уже имеет, о как. Скоро поинтересуется: почему же это на ноль делить нельзя?
И вот решил я простыми словами записать всё, что я ещё помню про деление на ноль и всё такое.

Деление вообще лучше один раз увидеть, чем сто раз услышать.
Ну, или один разделить на икс раз увидеть…

Тут сразу видно, что ноль - это центр жизни, вселенной и всего такого. Ответом на главный вопрос про всё это пусть себе будет 42, а вот центр - по-любому 0. У него даже знака нет, ни плюс (послушалась), ни минус (не послушалась), он таки реально ноль. И в поросятах знает толк.

Потому что если любого поросёнка умножить на ноль, то поросёнка засасывает в эту круглую чёрную дыру, и получается опять ноль. Не такой уж этот ноль и нейтральный, когда дело от сложения-вычитания доходит до умножения, не говоря уже про деление… Там если ноль сверху «0/x» - то опять чёрная дыра. Всё поедает в ноль. А вот если при делении, да ещё и снизу - «x/0», то начинается… следуй за белым кроликом, Соня!

В школе тебе скажут «на ноль делить нельзя» и не покраснеют. В доказательство тыкнут на калькуляторе «1/0=» и обычный калькулятор, тоже не покраснев, напишет «E», «Error», мол, «нельзя - значит нельзя». Хотя что там у тебя будет считаться обычным калькулятором - ещё вопрос. Мне вот сейчас, в 2014-ом, стандартный калькулятор на телефоне-андроиде пишет совсем другое:

Ничего себе бесконечность. Скользи себе взглядом, круги нарезай. Вот тебе и нельзя. Оказывается можно. Если осторожно. Потому что не осторожно мой Android пока тоже не согласен: «0/0=Error», опять нельзя. Попробуем ещё разок: «-1/0 = -∞», о как. Интересное мнение, но я с ним не согласен. Как не согласен и с «0/0=Error».

Кстати, JavaScript, который питает нынешние сайты, тоже не согласен с калькулятором андроида: зайди в консоль браузера (ещё F12?) и напиши там: «0/0» (ввод). JS тебе ответит: «NaN». Это не ошибка. Это «Not a Number» - т.е. какая-то штука такая, но не число. При том что «1/0» JS тоже понимает как «Infinity». Это уже ближе. Но пока только тепло…

В университете - высшая математика. Там пределы, полюса, и прочее шаманство. И всё усложняется, усложняется, ходят вокруг да около, но только бы не нарушать хрустальные законы математики. А вот если не пытаться вписать деление на ноль в эти существующие законы, то можно прочувствовать эту фантастику - на пальцах.

Для этого посмотрим-ка ещё раз на деление:

Следи за правой линией, справа налево. Чем ближе икс к нулю, тем сильнее взлетает вверх разделённое на икс. И где-то там в облаках «плюс бесконечность». Она всегда дальше, как горизонт, её не догонишь.

А теперь следи за левой линией, слева направо. Та же история, только теперь разделённое улетает вниз, бесконечно вниз, в «минус бесконечность». Отсюда и мнение, что «1/0= +∞», а «-1/0 = 1/-0 = -∞».

Но фокус в том, что «0 = -0», нету у нуля знака, если не усложнять с пределами. И вот если поделить единицу на такой «простой» ноль без знака, то не логично ли предположить, что получится и бесконечность - «просто» бесконечность, без знака, как ноль. Где она - сверху или снизу? Она везде - бесконечно далеко от нуля во всех направлениях. Это и есть ноль, вывернутый наизнанку. Ноль - нет ничего. Бесконечность - есть всё. И положительное, и отрицательное. Вообще всё. И сразу. Абсолют.

Но там что-то было про «0/0», что-то другое, не бесконечность… Сделаем такой трюк: «2*0=0», ага, скажет учительница в школе. Ещё: «3*0=0» - опять ага. И немного наплевав на «на ноль делить нельзя», мол, весь мир и так потихоньку делит, получим: «2=0/0» и «3=0/0». В каком там классе это проходят, только без нуля, конечно.

Минуточку, получается «2 = 0/0 = 3», «2=3»?! Вот поэтому и боятся, вот поэтому и «нельзя». Страшнее «1/0» только «0/0», его даже калькулятор андроида боится.

А мы не боимся! Потому что у нас есть сила математики воображения. Мы можем представить себя бесконечным Абсолютом где-то там в звёздах, посмотреть оттуда на грешный мир конечных чисел и людей и понять, что с этой точки зрения они все одинаковые. И «2» c «3», и даже «-1», и училка в школе, возможно, тоже.

Так вот, я скромно предполагаю, что 0/0 - это весь конечный мир, точнее всё, что и не бесконечно и не пустота.

Вот как выглядит ноль, делённый на икс, в моих фантазиях, далёких от официальной математики. На самом деле похоже на 1/х, только перегиб не в единице, а в нуле. Кстати, у 2/x перегиб в двойке, а у 0.5/x - в 0.5.

Получается, 0/x при x=0 принимает все конечные значения - не бесконечности, не пустоту. Там в графике дырочка в нуле, оси проглядывают.

Можно конечно возразить, что «0*0 = 0», а значит ноль (пустота) тоже попадает в категорию 0/0. Чуть забегу вперёд - там будут степени нуля и это возражение разлетится в осколки.

Упс, единичка-то в бесконечности тоже может быть тоже записана как 0/0, получится (0/0)/0 - бесконечность. Вот теперь порядок, всё можно выразить соотношением нулей.

Например, если к бесконечности прибавить конечное, то бесконечность поглотит конечное, останется бесконечностью:
1/0 + 0/0 = (1+0)/0 = 1/0.

А если бесконечность умножить на пустоту, то они поглощают друг друга, и получается конечный мир:
1/0 * 0 = (1*0)/0 = 0/0.

Но это только первый уровень сновидений. Можно копать глубже.

Если ты уже знаешь понятие «степень числа», и что «1/x = x^-1», то, подумав, сможешь перейти от всех этих делений и скобок (вроде (0/0)/0) просто к степеням:

1/0 = 0^-1
0/0 = 0^0
0 = 0^1

Подсказка.
Тут с бесконечностью и пустотой всё просто, как в школе. А конечный мир переходит к степеням вот так:
0/0
= (0*1)/0
= 0*(1/0)
= 0 * 1/0
= 0^1 * 0^-1
= 0^(1 + -1)
= 0^(1-1)
= 0^0.

Уфф!

Получается, что положительные степени нуля - это нули, отрицательные степени нуля - это бесконечности, а нулевая степень нуля - это конечный мир.

Такой вот получается универсальный объект «0^x». Такие объекты прекрасно между собой взаимодействуют, опять-таки многим законам подчиняются, красота, в общем.

Моих скромных познаний математики хватило, чтобы нарисовать из них абелеву группу, которая, будучи изолированной в вакууме («просто абстрактные объекты, такая форма записи, вроде экспоненты»), даже выдержала проверку крутейшим преподом по матану с вердиктом «интересно, но ничего не получится». Ещё бы тут что-нить получилось, это ж табуированная тема - деление на ноль. В общем, не грузись.

Попробуем лучше просто умножить бесконечность на конечное число:
0^-1 * 0^0 = 0^(-1 + 0) = 0^-1.

Опять же, бесконечность поглотила конечное число так же, как и её антипод ноль поглощает конечные числа, та же чёрная дыра:
0^1 * 0^0 = 0^(1 + 0) = 0^1.

А ещё оказывается что степени - это как сила. Т.е. ноль второй степени сильнее нуля обычного (первой степени, 0^1). И бесконечность минус второй степени сильнее бесконечности обычной (0^-1).

А когда пустота сталкивается с абсолютом, они меряются силой - у кого больше, тот и победит:
0^1 * 0^-2 = 0^(1 + -2) = 0^-1 = ∞.
0^2 * 0^-1 = 0^(2 + -1) = 0^1 = 0.

Если же они равны силами, то аннигилируются и остаётся конечный мир:
0^1 * 0^-1 = 0^(1 + -1) = 0^0.

Кстати, официальная математика уже рядом. Её представители знают про «полюса» и что у полюсов разная сила (порядок), а так же про «нуль порядка k». Но они всё топчутся на прочной поверхности «рядом с» и боятся прыгнуть в чёрную нору дыру.

И последний для меня - третий уровень сновидений. Вот, например, эти все 0^-1 и 0^-2 - бесконечности разной силы. Или 0^1, 0^2 - нули разной силы. Но ведь и «-1» и «-2» и «+1» и «+2» - это всё - 0/0, равное 0^0, уже проходили. Получается, что с этого уровня сновидений, уже всё равно вообще что это - нули, бесконечности, и даже конечный мир туда при некотором просветлении попадает. В одну точку. В одну категорию. Называется это счастье - Сингулярность.

Надо признать, что вне состояния просветления одной точки я не наблюдаю, но одну категорию - объединение «0^0 U 0^(0^0)» - вполне.

Какую из всего этого можно вынести пользу? Ведь даже чуть менее безумные «мнимые числа», что тоже рвут калькуляторы в Error = √-1, и те смогли стать официальной математикой и теперь упрощают расчёты сталеварения.

Как листья на дереве издалека кажутся одинаковыми, но если рассмотреть их внимательнее - они все разные. А если задуматься, то опять одинаковые. И мало чем отличаются от тебя или меня. Вернее, вообще ничем не отличаются, если крепко задуматься.

Польза тут в умении и фокусироваться на отличиях и абстрагироваться. Это очень полезно и в работе, и в жизни, и даже в отношении к смерти.

Вот такие путешествия в кроличью нору, Соня!

Почему нельзя делить на ноль? April 16th, 2018

Итак, недавно мы обсуждали . А вот еще интересное утверждение. «Делить на ноль нельзя!» - большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?». Вот что будет, если

А ведь на самом деле очень интересно и важно знать, почему же нельзя.

Всё дело в том, что четыре действия арифметики - сложение, вычитание, умножение и деление - на самом деле неравноправны. Математики признают полноценными только два из них - сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Рассмотрим, например, вычитание. Что значит 5 – 3? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5. То есть 5 – 3 - это просто сокращенная запись уравнения: x + 3 = 5. В этом уравнении нет никакого вычитания. Есть только задача - найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8.

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 - это сокращение от 0 · x = 5. То есть это задание найти такое число, которое при умножении на 0 даст 5. Но мы знаем, что при умножении на 0 всегда получается 0. Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0, и тогда получаем 0 · 0 = 0. Выходит, 0: 0=0? Но не будем спешить. Попробуем взять x = 1. Получим 0 · 1 = 0. Правильно? Значит, 0: 0 = 1? Но ведь так можно взять любое число и получить 0: 0 = 5, 0: 0 = 317 и т. д.

Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0. А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)

Вот такая особенность есть у операции деления. А точнее - у операции умножения и связанного с ней числа ноль.

Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними.

Делить на ноль нельзя!» - большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.
Всё дело в том, что четыре действия арифметики - сложение, вычитание, умножение и деление - на самом деле неравноправны. Математики признают полноценными только два из них - сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Рассмотрим, например, вычитание. Что значит 5 – 3? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5. То есть 5 – 3 - это просто сокращенная запись уравнения: x + 3 = 5. В этом уравнении нет никакого вычитания. Есть только задача - найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8.

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 - это сокращение от 0 · x = 5. То есть это задание найти такое число, которое при умножении на 0 даст 5. Но мы знаем, что при умножении на 0 всегда получается 0. Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0, и тогда получаем 0 · 0 = 0. Выходит, 0: 0=0? Но не будем спешить. Попробуем взять x = 1. Получим 0 · 1 = 0. Правильно? Значит, 0: 0 = 1? Но ведь так можно взять любое число и получить 0: 0 = 5, 0: 0 = 317 и т. д.
Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0. А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)
Вот такая особенность есть у операции деления. А точнее - у операции умножения и связанного с ней числа ноль.

Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.

  • Tutorial

Моя трёхлетняя дочка София в последнее время частенько упоминает «ноль», например, в таком контексте:

- Соня, вот ты вроде сначала не послушалась, а затем послушалась, что же получается?..
- Ну… ноль!

Т.е. ощущение отрицательных чисел и нейтральности нуля уже имеет, о как. Скоро поинтересуется: почему же это на ноль делить нельзя?
И вот решил я простыми словами записать всё, что я ещё помню про деление на ноль и всё такое.

Деление вообще лучше один раз увидеть, чем сто раз услышать.
Ну, или один разделить на икс раз увидеть…

Тут сразу видно, что ноль - это центр жизни, вселенной и всего такого. Ответом на главный вопрос про всё это пусть себе будет 42, а вот центр - по-любому 0. У него даже знака нет, ни плюс (послушалась), ни минус (не послушалась), он таки реально ноль. И в поросятах знает толк.

Потому что если любого поросёнка умножить на ноль, то поросёнка засасывает в эту круглую чёрную дыру, и получается опять ноль. Не такой уж этот ноль и нейтральный, когда дело от сложения-вычитания доходит до умножения, не говоря уже про деление… Там если ноль сверху «0/x» - то опять чёрная дыра. Всё поедает в ноль. А вот если при делении, да ещё и снизу - «x/0», то начинается… следуй за белым кроликом, Соня!

В школе тебе скажут «на ноль делить нельзя» и не покраснеют. В доказательство тыкнут на калькуляторе «1/0=» и обычный калькулятор, тоже не покраснев, напишет «E», «Error», мол, «нельзя - значит нельзя». Хотя что там у тебя будет считаться обычным калькулятором - ещё вопрос. Мне вот сейчас, в 2014-ом, стандартный калькулятор на телефоне-андроиде пишет совсем другое:

Ничего себе бесконечность. Скользи себе взглядом, круги нарезай. Вот тебе и нельзя. Оказывается можно. Если осторожно. Потому что не осторожно мой Android пока тоже не согласен: «0/0=Error», опять нельзя. Попробуем ещё разок: «-1/0 = -∞», о как. Интересное мнение, но я с ним не согласен. Как не согласен и с «0/0=Error».

Кстати, JavaScript, который питает нынешние сайты, тоже не согласен с калькулятором андроида: зайди в консоль браузера (ещё F12?) и напиши там: «0/0» (ввод). JS тебе ответит: «NaN». Это не ошибка. Это «Not a Number» - т.е. какая-то штука такая, но не число. При том что «1/0» JS тоже понимает как «Infinity». Это уже ближе. Но пока только тепло…

В университете - высшая математика. Там пределы, полюса, и прочее шаманство. И всё усложняется, усложняется, ходят вокруг да около, но только бы не нарушать хрустальные законы математики. А вот если не пытаться вписать деление на ноль в эти существующие законы, то можно прочувствовать эту фантастику - на пальцах.

Для этого посмотрим-ка ещё раз на деление:

Следи за правой линией, справа налево. Чем ближе икс к нулю, тем сильнее взлетает вверх разделённое на икс. И где-то там в облаках «плюс бесконечность». Она всегда дальше, как горизонт, её не догонишь.

А теперь следи за левой линией, слева направо. Та же история, только теперь разделённое улетает вниз, бесконечно вниз, в «минус бесконечность». Отсюда и мнение, что «1/0= +∞», а «-1/0 = 1/-0 = -∞».

Но фокус в том, что «0 = -0», нету у нуля знака, если не усложнять с пределами. И вот если поделить единицу на такой «простой» ноль без знака, то не логично ли предположить, что получится и бесконечность - «просто» бесконечность, без знака, как ноль. Где она - сверху или снизу? Она везде - бесконечно далеко от нуля во всех направлениях. Это и есть ноль, вывернутый наизнанку. Ноль - нет ничего. Бесконечность - есть всё. И положительное, и отрицательное. Вообще всё. И сразу. Абсолют.

Но там что-то было про «0/0», что-то другое, не бесконечность… Сделаем такой трюк: «2*0=0», ага, скажет учительница в школе. Ещё: «3*0=0» - опять ага. И немного наплевав на «на ноль делить нельзя», мол, весь мир и так потихоньку делит, получим: «2=0/0» и «3=0/0». В каком там классе это проходят, только без нуля, конечно.

Минуточку, получается «2 = 0/0 = 3», «2=3»?! Вот поэтому и боятся, вот поэтому и «нельзя». Страшнее «1/0» только «0/0», его даже калькулятор андроида боится.

А мы не боимся! Потому что у нас есть сила математики воображения. Мы можем представить себя бесконечным Абсолютом где-то там в звёздах, посмотреть оттуда на грешный мир конечных чисел и людей и понять, что с этой точки зрения они все одинаковые. И «2» c «3», и даже «-1», и училка в школе, возможно, тоже.

Так вот, я скромно предполагаю, что 0/0 - это весь конечный мир, точнее всё, что и не бесконечно и не пустота.

Вот как выглядит ноль, делённый на икс, в моих фантазиях, далёких от официальной математики. На самом деле похоже на 1/х, только перегиб не в единице, а в нуле. Кстати, у 2/x перегиб в двойке, а у 0.5/x - в 0.5.

Получается, 0/x при x=0 принимает все конечные значения - не бесконечности, не пустоту. Там в графике дырочка в нуле, оси проглядывают.

Можно конечно возразить, что «0*0 = 0», а значит ноль (пустота) тоже попадает в категорию 0/0. Чуть забегу вперёд - там будут степени нуля и это возражение разлетится в осколки.

Упс, единичка-то в бесконечности тоже может быть тоже записана как 0/0, получится (0/0)/0 - бесконечность. Вот теперь порядок, всё можно выразить соотношением нулей.

Например, если к бесконечности прибавить конечное, то бесконечность поглотит конечное, останется бесконечностью:
1/0 + 0/0 = (1+0)/0 = 1/0.

А если бесконечность умножить на пустоту, то они поглощают друг друга, и получается конечный мир:
1/0 * 0 = (1*0)/0 = 0/0.

Но это только первый уровень сновидений. Можно копать глубже.

Если ты уже знаешь понятие «степень числа», и что «1/x = x^-1», то, подумав, сможешь перейти от всех этих делений и скобок (вроде (0/0)/0) просто к степеням:

1/0 = 0^-1
0/0 = 0^0
0 = 0^1

Подсказка.
Тут с бесконечностью и пустотой всё просто, как в школе. А конечный мир переходит к степеням вот так:
0/0
= (0*1)/0
= 0*(1/0)
= 0 * 1/0
= 0^1 * 0^-1
= 0^(1 + -1)
= 0^(1-1)
= 0^0.

Уфф!

Получается, что положительные степени нуля - это нули, отрицательные степени нуля - это бесконечности, а нулевая степень нуля - это конечный мир.

Такой вот получается универсальный объект «0^x». Такие объекты прекрасно между собой взаимодействуют, опять-таки многим законам подчиняются, красота, в общем.

Моих скромных познаний математики хватило, чтобы нарисовать из них абелеву группу, которая, будучи изолированной в вакууме («просто абстрактные объекты, такая форма записи, вроде экспоненты»), даже выдержала проверку крутейшим преподом по матану с вердиктом «интересно, но ничего не получится». Ещё бы тут что-нить получилось, это ж табуированная тема - деление на ноль. В общем, не грузись.

Попробуем лучше просто умножить бесконечность на конечное число:
0^-1 * 0^0 = 0^(-1 + 0) = 0^-1.

Опять же, бесконечность поглотила конечное число так же, как и её антипод ноль поглощает конечные числа, та же чёрная дыра:
0^1 * 0^0 = 0^(1 + 0) = 0^1.

А ещё оказывается что степени - это как сила. Т.е. ноль второй степени сильнее нуля обычного (первой степени, 0^1). И бесконечность минус второй степени сильнее бесконечности обычной (0^-1).

А когда пустота сталкивается с абсолютом, они меряются силой - у кого больше, тот и победит:
0^1 * 0^-2 = 0^(1 + -2) = 0^-1 = ∞.
0^2 * 0^-1 = 0^(2 + -1) = 0^1 = 0.

Если же они равны силами, то аннигилируются и остаётся конечный мир:
0^1 * 0^-1 = 0^(1 + -1) = 0^0.

Кстати, официальная математика уже рядом. Её представители знают про «полюса» и что у полюсов разная сила (порядок), а так же про «нуль порядка k». Но они всё топчутся на прочной поверхности «рядом с» и боятся прыгнуть в чёрную нору дыру.

И последний для меня - третий уровень сновидений. Вот, например, эти все 0^-1 и 0^-2 - бесконечности разной силы. Или 0^1, 0^2 - нули разной силы. Но ведь и «-1» и «-2» и «+1» и «+2» - это всё - 0/0, равное 0^0, уже проходили. Получается, что с этого уровня сновидений, уже всё равно вообще что это - нули, бесконечности, и даже конечный мир туда при некотором просветлении попадает. В одну точку. В одну категорию. Называется это счастье - Сингулярность.

Надо признать, что вне состояния просветления одной точки я не наблюдаю, но одну категорию - объединение «0^0 U 0^(0^0)» - вполне.

Какую из всего этого можно вынести пользу? Ведь даже чуть менее безумные «мнимые числа», что тоже рвут калькуляторы в Error = √-1, и те смогли стать официальной математикой и теперь упрощают расчёты сталеварения.

Как листья на дереве издалека кажутся одинаковыми, но если рассмотреть их внимательнее - они все разные. А если задуматься, то опять одинаковые. И мало чем отличаются от тебя или меня. Вернее, вообще ничем не отличаются, если крепко задуматься.

Польза тут в умении и фокусироваться на отличиях и абстрагироваться. Это очень полезно и в работе, и в жизни, и даже в отношении к смерти.

Вот такие путешествия в кроличью нору, Соня!

Деление на 0 вызывает множество вопросов у тех людей, которые занимались математикой и имели с нею контакт лишь на этапе школьного образования. Во время того, когда ребенок начинает изучать в целом операции умножения и деления, подходит дело и к делению на ноль. В этот момент учитель говорит, чаще всего, что делить на ноль нельзя и… все.

Объяснения на этом этапе окончены. Нельзя, и хоть ты тресни

Перед учеником становится дилемма - верить учителям на слово и просто писать, что ответа в примере, где всплывает такая операция, нет, или попытаться разобраться в этом вопросе. Но большинство родителей, которые давным-давно окончили школу и благополучно выбросили на помойку головного мозга все те знания, которые вдалбливались им в школьное время (кроме тех, которые хоть как-то пригодились им в жизни), тоже не особо могут помочь в этом вопросе. А выход сравнительно прост. Хорошо, если учитель подойдет к вопросу, почему нельзя делить на ноль, с творческой стороны. Для этого достаточно будет произвести обычные операции с наглядной демонстрацией процесса. О чем речь?

Демонстрация разных операций деления с помощью понятных любому человеку действий

Можно взять несколько яблок, допустим, шесть штук, и объяснить, что 6 - это число, которое нужно разделить, то есть, согласно изученным математическим терминам, это делимое.

Учитель стоит возле доски, и перед ним на столе лежит 6 яблок. Затем он подзывает двоих человек из класса и делит между ними эти яблоки поровну. То есть два человека в данном случае выступают за делитель - число, на которое следует разделить делимое. Каждому ученику учитель отдаёт в руки по три яблока. То есть процесс деления происходит именно тогда, когда учитель передавал яблоки в руки ученикам. И три яблока в руках у каждого ребенка - это частное от деления.

Деление нуля на число - демонстрация происхождения процесса

Вопрос, почему нельзя делить на ноль, возникает от обратной ситуации - почему же можно делить ноль на число? Это сейчас мы умные и знаем, что любое число можно поделить на другое, и оно будет делиться нацело или появится дробь, или даже отрицательный знак, корень или число Пи - все возможно. Но вот с нулем загадка и все.

Что же происходит, когда делят нуль на число?

Для того чтобы объяснить, что на ноль делить нельзя, разберемся сначала с тем, что происходит, когда 0 делится на определенное число. Тот же учитель стоит возле доски, и у него на столе ничего нет. Перед ним пустота, ноль. Когда ученики подходят к нему и протягивают руки, чтобы получить свое частное, учитель делится с ним этим ничем, просто прикасаясь к их ладоням. То есть у него было одно большое ничего, и он отдал это ничего двум ученикам. Таким образом, становится понятно, что и деление нуля на любое число имеет место, ведь процесс передачи состоялся. С той только разницей, что с нулевым результатом.

Случай третий

Аналогичную, третью ситуацию проводить нужно уже для того, чтобы показать, почему нельзя делить на ноль. У учителя в руках или на столе перед ним снова те самые шесть яблок, что и в первой ситуации. Но мы делим на ноль, потому к нему за яблоками никто не подходит.

То есть те двое учеников, которые подходили ранее в первой ситуации, представляли собой число 2. Чтобы представить число 0, получается, что должен подойти никто. Как мы помним, именно передача из рук учителя яблок в руки ученикам является процессом деления. Но сейчас учеников нет, и процесс деления ни с кем не происходит. От того и получается, что поделить на ноль невозможно. Для детей на уровне школьного образования это элементарное объяснение.

Просто и легко объяснить. А после пусть делают то же самое преподаватели института

Уже после поступления в высшее учебное учреждение и изучения понятия границы, например, снимается вопрос, почему нельзя делить на ноль, ведь окажется, что сделать это можно. Поделив что-то на ноль, в результате мы получим бесконечность, неопределенность.

Бесконечная размерность такого результата еще не до конца определена, и человек, который не имеет особого математического образования, не способен понять, зачем это нужно, какие цели преследовались при решении данной операции и что вообще это дает. Но для учеников школьного возраста вышеописанного объяснение вполне достаточно, чтобы удовлетворить их желание понять, почему же все же нельзя делить на ноль - не просто сказать это и поставить детей перед фактом, а дать им интересное и занимательное объяснение.



просмотров